J0076-22-04 April 23, 2010

Prepared For:

Springfield Redevelopment Authority c/o Law Department City Hall, 36 Court Street Springfield, Massachusetts 01103 Attention: Attorney Robert Warren

Environmental Site Assessment Indian Orchard Business Park Former Chapman Valve Site Pinevale Street Property Indian Orchard, MA

Prepared By:

O'Reilly, Talbot & Okun Associates, Inc. 293 Bridge Street, Suite 500 Springfield, MA 01103

EnvironmentalSafetyHealthGeotechnical

O'Reilly, Talbot & Okun

293 Bridge Street

Suite 500

Springfield, MA 01103

Tel 413 788 6222

Fax 413 788 8830

www.oto-env.com

J0076-22-04 April 23, 2010

Springfield Redevelopment Authority c/o Law Department City Hall, 36 Court Street Springfield, Massachusetts 01103 Attention: Attorney Robert Warren

Re: Environmental Site Assessment Indian Orchard Business Park Former Chapman Valve Site Pinevale Street Property Springfield, Massachusetts

Dear Mr. Warren:

O'Reilly, Talbot & Okun Associates, Inc. (OTO) is pleased to present this Environmental Site Assessment report for the Main Factory portion of the former Crane Company (Chapman Valve) facility, located on the east side of Pinevale Street in the Indian Orchard section of Springfield. It is anticipated that this parcel will be included in the planned Indian Orchard Business Park.

If you have any questions or comments about this document, please do not hesitate to call. We appreciate the opportunity to assist you in this matter.

Very truly yours,

O'Reilly, Talbot & Okun Associates, Inc.

Brindiana Warenda Project Engineer

Valerie D. Tillinghast, LSP

Project Manager

Talbot, P.E.

Principal

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 SITE DESCRIPTION	1
1.2 SITE SETTING	
2.0 SITE HISTORY	3
2.1 INFORMATION FROM OWNER	5
2.2 ASSESSOR'S INFORMATION	5
2.3 HISTORICAL MAP REVIEW	5
2.4 HISTORICAL CITY DIRECTORY REVIEW	6
2.5 UNDERGROUND STORAGE TANK INFORMATION	
2.6 SITE HISTORY SUMMARY	8
3.0 REGULATORY INFORMATION	
3.1 LOCAL INFORMATION	8
3.2 STATE FILE INFORMATION	8
3.2.1 MassGIS Mapping	8
3.2.2 MassDEP Files	
4.0 SUMMARY OF PRIOR ENVIRONMENTAL INVESTIGATIONS	
4.1 ERT ASSESSMENT, 1986-1988	10
4.2 CON-TEST ASSESSMENT 1991	
4.3 ATC ASSESSMENT 1995-1998	
4.3.1 Soil Testing	13
4.3.2 Groundwater Monitoring	13
4.3.3 UST 1-4 Area Assessment and Excavation	14
4.3.4 Additional Soil Excavation	
4.3.5 PCB Testing	
4.3.6 Hydrogeologic Setting	
4.3.7 Risk Assessment	16
4.4 TETRA TECH NUS SITE INSPECTION, 2000	
4.5 ATC AUDIT RESPONSE, 2003	
4.6 OTO ASSESSMENT, 2006	18
4.7 WJF RELEASE ABATEMENT MEASURE, 2006-2009	19
5.0 SUBSURFACE INVESTIGATIONS AND TESTING	
5.1 SOIL BORINGS AND MONITORING WELL INSTALLATION	
5.2 TEST PITS	
5.3 SOIL PILES	
5.4 SOIL ANALYSES	
5.4.1 PID Screening	
5.4.2 Laboratory Analyses	23
5.5 GROUNDWATER ÁNALYSES	25
5.5.1 Petroleum Hydrocarbons and VOCs	
5.5.2 Metals	26
5.6 SUMMARY OF REPORTABLE CONCENTRATION EXCEEDENCES	
6.0 SUMMARY AND CONCLUSIONS	
6.1 STTE USE HISTORY	28

TABLE OF CONTENTS (Continued)

6.2 PRIO	R SITE INVESTIGATIONS AND REMEDIATION	29
6.3 OTO I	NVESTIGATIONS	30
6.3.1 S	oil Conditions	30
6.3.2 (Groundwater Conditions	31
	CTS OF RELEASES ON FUTURE DEVELOPMENT	
	MATED COST OF FUTURE RESPONSE ACTIONS	
	TONS	
	NCES	
9.0 LIST OF	ACRONYMS	37
TABLES Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9	Underground Storage Tank (UST) Summary Soil Analytical Results: Test Pits, 2006; EPH, VPH and PCBs Soil Analytical Results: Test Pits, 2006; Inorganic Analytes Soil Analytical Results – Volatile and Extractable Petroleum Hydrocarbons Soil Analytical Results – RCRA-8 Metals and PCBs Soil Analytical Results – Test Pits, 2009 Groundwater Field Screening Results Groundwater Analytical Results Summary of Areas of Concern	
FIGURES Figure 1 Figure 2 Figure 3 Figure 4	Site Locus Site Plan DEP Priority Resource Map Potentially Reportable Conditions	
APPENDICI Appendix A Appendix B Appendix C Appendix D Appendix E Appendix F Appendix G		

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

1.0 INTRODUCTION

This report has been prepared by O'Reilly, Talbot & Okun Associates, Inc. (OTO) and presents the results of environmental investigations assessing the nature and extent of oil and/or hazardous materials in soil and groundwater at a portion of the former Chapman Valve/Crane Manufacturing site, located in the Indian Orchard section of Springfield, Massachusetts. The specific property which is the subject of this assessment is the parcel presently owned by Goodwin Realty LLC. It is located to the north of Goodwin Street and is bounded by Pinevale Street on the west and by Moxon Street on the east. A Site Locus is provided as Figure 1, while a Site Plan is provided as Figure 2. This report is subject to the Limitations attached in Appendix A.

For discussion purposes, we have subdivided the property into six areas, referred to as Area Nos. 1 through 6, shown on Figure 2. These designations are strictly arbitrary and are intended to aid in the discussion of data collected during this and previous studies and to assist future property developers in focusing on information applicable to specific portions of the property. As of the date of this report, planning and future site configuration has not been established. The six parcels are approximately equal in size and are laid out in a north to south and east to west direction, with Area No. 1 being located in the northeast corner of the Site and Area No. 6 being located in the southwest corner.

1.1 SITE DESCRIPTION

The former Chapman Valve/Crane Company factory site consists of 15.95 acres of land bounded by Pinevale Street on the west, Goodwin Street on the south, Moxon Street to the east, and by land owned by OK Pet Supply and the City of Springfield on the north. Surrounding land use is primarily residential. Elevation of the property ranges from approximately 200 to 230 feet (National Geodetic Vertical Datum (NGVD) of 1929). The property is currently vacant. The former Chapman Valve buildings have been demolished. Portions of foundations and other subsurface structures remain in places. The Site is overgrown, with piles of debris and imported fill in some areas.

For the purposes of this report, the Site has been divided into the following six sub-areas, shown on Figure 2:

1. Area 1 is located in the northeast corner of the Site. It is bounded by Moxon Street on the east and by land owned by OK Pet Supply on the north. It is relatively flat at approximately elevation 207 feet NGVD. It is presently overgrown with small trees and brush. Approximately half the area was formerly covered by the Iron Foundry Building. The floor slabs and foundations for this building remain in place.

2. Area 2 is a located in the northwest portion of the Site. It is bounded by Pinevale Street on the west. This portion of the Site is relatively flat at approximately elevation 206 feet. A large concrete slab is present where the former Spindle Room

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

building was located in the east central portion of the Site. Four underground storage tanks, which where used to store heating oil for the facility power house, were located in the southeast portion of this area. The former building at 121 Pinevale Street, which is owned by the City of Springfield, is not considered part of the Site. Concrete slabs for the former maintenance shop and an office building cover much of the southern part of this area.

- 3. Area 3 is located in the east central portion of the Site. It is bounded by Moxon Street on the east. It is relatively flat at approximately elevation 208 feet and is presently overgrown with small trees and brush. Most of this area was formerly covered by Crane Manufacturing buildings, the Iron Foundry Building to the north, and a Machine Shop to the south. The floor slabs and foundations for these buildings remain in place.
- 4. Area 4 is located in the west central portion of the Site. It is bounded by Pinevale Street on the west. It formerly was relatively flat at approximately elevation 207 feet. However, substantial amounts of fill were recently imported to the Site, and large fill mounds are located in the southern portion of this area. These fill mounds are approximately 20 feet high and appear to consist primarily of sandy fill, containing wood, brick, concrete, metal, and materials. Portions of Area 4 are presently overgrown with small trees and brush. Several manufacturing buildings were formerly located within this portion of the Site, including the Power House, the Pattern Shop, the Hospital, two Brass Foundry Buildings, and two Machine Shop Buildings. The floor slabs and foundations for this building remain in place. Two underground storage tanks (UST Nos. 6 and 7) were formerly located in the northwestern portion of this area.
- 5. Area 5 is located in the southeast portion of the Site. It is bounded by Moxon Street on the east and Goodwin Street on the south. A topographic change occurs in this area, where the elevation rises from the north to the south, from approximately elevation 210 feet at the northern edge of the area to approximately elevation 218 in the center. The southern part of this area is approximately flat at elevation 225 feet. This area formerly contained the Crane Steel Foundry and Welding Shop and the Steel Machine Shop. Two USTs (Nos. 10 and 11) were formerly located in the eastern part of this area, and six USTs (Nos. 12-17) were located in the southeastern corner.
- 6. Area 6 is located in the southwest comer of the Site. It is bounded by Pinevale Street on the west and by Goodwin Street on the south. A topographic change occurs in the northern part of this area, where the elevation rises from the north to the south, from approximately elevation 207 feet at the northern edge of the area to approximately elevation 218 in the center. The southern part of this area is approximately flat at elevation 220 feet. This area formerly contained the western part of the Crane Steel Foundry and Welding Shop and the Steel Machine Shop.

ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

1.2 SITE SETTING

The Site is located in the Chicopee River drainage basin and is characterized by Zone X of the Flood Insurance Rate Map (indicating that the land would not generally be subject to flooding), as an area outside of the 500 year flood plain. Based on topography, regional groundwater flow direction would be expected to be to the north and northwest towards the Chicopee River Site. Subsurface investigations at the Site generally indicate a north/northeasterly groundwater flow below the Site (Section 4.0). No surface water bodies or wetlands are located at the Site. The nearest surface water is the Chicopee River, located approximately 1,400 feet north of the Site. Long Pond is located approximately 1,500 feet west of the Site.

According to the on-line GIS Map for Springfield, Massachusetts (available on-line at http://maps.massgis.state.ma.us/massgis viewer/index.htm), the Site is not located in a mapped potentially productive aquifer, a potential drinking water source area, an Interim Wellhead Protection Area (IWPA), a Zone A, or a Zone II of a public water supply well. A copy of the MassGIS priority resources map is attached as Figure 3. Officials at the Springfield Health Department indicated they have no records of groundwater supply wells on the Site or on abutting properties. Therefore, based on criteria outlined in the Massachusetts Contingency Plan 310 CMR 40.0000, the Site groundwater reporting classification is RCGW-2. The Site soil classification would be RCS-1 for release reporting, due to the presence of residential properties within 500 feet of the Site.

The GIS mapping indicates there is no Protected Open Space or rare species habitat at or abutting the Site.

2.0 SITE HISTORY

Information on historical use of the Site and vicinity was obtained from a review of historic maps and city directories available at the Connecticut Valley Historic Museum (CVHM) in Springfield, Massachusetts; from information available at the City of Springfield Assessor's Office; from prior Site reports; and from discussions with the present Site owner, Ms. Judith Bergdoll and her representative, Marlene Fleming of Michelman & Bricker P.C. A summary of information from these sources is provided below.

The Site formerly contained approximately 12 factory buildings used by Chapman Valve/Crane. Chapman Valve was a fully integrated mill which produced brass, iron, and steel valves and hydrants for the water supply industry and for other uses. In general, metal ingots of the various metals were received at the Site; these metals were then melted in furnaces and poured in molten form into molds to form the rough metal part. These parts were then machined, assembled, and finished into the final product. The foundry was fueled

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

by coal and coke during the entire period of operation. Manufacturing operations started on the Site in approximately 1874 and continued until 1986.

The Site was owned by Chapman Valve Manufacturing Co. until 1959, when the entire company was acquired by Crane Company. The Site buildings contained a wide range of manufacturing operations associated with the manufacture of valves, including foundry operations, machine shops, assembly of valves, maintenance, and support services.

In 1948 and 1949, radioactive materials were managed in a portion of the property, within Building 23 (shown on Figure 2). According to one report (SCA, 2007) uranium rods were shipped to the Site, where they were cut and machined. A study of residual uranium contamination was conducted under the Formerly Utilized Site Remedial Action Program (FUSRAP) in the early 1990s. Elevated levels of radiation were identified in dust and building materials, and a cleanup of the area was conducted in 1994-1995 by U.S. Department of Energy (DOE) contractors. The DOE report concluded that residual radiological impacts in soil did not exceed background levels. The DOE issued a final certification docket (DOE, 2003) which concluded that the property was in compliance with radiological guidelines in effect at the time, and that future use of the Site would not produce significant radiological hazard. Based on the cleanup under a federal program, OTO did not conduct additional radiological assessment.

The locations and uses of former Site buildings are shown on Figure 2. As can be seen on Figure 2, the buildings formerly covered approximately 400,000 square feet, or about 55 percent of the Site. An underground utility tunnel traversed the Site in a north-south orientation between Buildings 25 and 48. The tunnel was reportedly approximately eight feet by ten feet in cross-section, approximately 190 feet long, and contained asbestosinsulated steam lines.

The former Site buildings were constructed starting in the mid-1800s and were present until they were demolished in 2000. Demolition involved the removal of above ground portions of the buildings only. The building floor slabs, foundations, buried utility tunnels, and at least one basement area remain. The ground surface is presently covered by building slabs or roadways, and overgrown areas of brush and small trees. During the past 10 years, construction debris has been imported onto the Site.

At least 19 underground storage tanks were formerly located on the Site. These tanks were reportedly removed at the time of facility shutdown in the 1980s. The reported size and contents of each tank are summarized in Table 1. The approximate location of the former USTs are shown on Figure 2. Information from prior environmental studies at the Site is provided in Section 4.0.

In April 1988, MassDEP listed the property on the Massachusetts Confirmed Disposal Sites List due to the presence of petroleum impacts at multiple locations on Site. Section 4.0

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

provides information on assessment and remediation activities previously conducted at the Site.

2.1 INFORMATION FROM OWNER

The Site is currently owned by Goodwin Realty LLC. The Secretary of the Commonwealth lists Judy Bergdoll as the resident agent and manager of that company. Ms. Bergdoll indicated at the time of the purchase of the Site by Goodwin Realty LLC, the Site buildings had been demolished and the Site was generally open and covered with pavement or concrete slabs. A previous Site owner, Crane Company, had demolished the Site buildings. Ms. Bergdoll indicated she did not know the source of the fill materials that have been deposited on the Site during recent years.

Ms. Bergdoll has not used the land for any identified purpose since she acquired the property. Her purchase was made with the intent of resale for industrial purposes.

2.2 ASSESSOR'S INFORMATION

We reviewed field cards for the Site available from the City of Springfield Assessor's on-line database. The assessor's records indicate the Site includes 694,113 square feet (approximately 15.9 acres) of land identified as parcel 09755-0086. There are currently no buildings on the property, which is zoned as an industrial park. The property is listed as currently owned by Goodwin Realty LLC, which acquired the property in 2005 from Indian Orchard Property Consultants, LLC. According to Secretary of State information, the manager and resident agent of both of those companies is Judy Bergdoll of Wilbraham, Massachusetts. The Assessor's card indicates Indian Orchard Property Consultants, LLC acquired the property in 1989 from Harry Friedberg.

2.3 HISTORICAL MAP REVIEW

We reviewed historic Sanborn Fire Insurance maps for the years 1911, 1932, and 1950. No coverage of the Site was available in the 1893 Sanborn maps. Copies of relevant sections of the available maps are provided in Appendix B. Note that some of the street names changed between 1911 and 1932. For example, Pinevale and Moxon Streets were previously known as Pine and East Streets, respectively.

The Site was occupied by the Chapman Valve Manufacturing Company on each of the available maps (1911 through 1950). Properties to the east and west of the Site were residential on each date. An office building and a series of garages used by Chapman Valve/Crane were formerly located across Pinevale Street to the west of the Site. The 1932 and 1950 maps show that the Chapman Valve facility expanded to the south over time. By 1950, a Chapman Valve steel foundry building was located south of Goodwin Street, on property that had been previously undeveloped except for railroad tracks. Property to the

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

north of the Site was occupied by two schools, as well as by a coal yard (1911 and 1932) and later an automotive repair garage (1950).

The 1911 Sanborn map of the Site shows two buildings labeled "Foundry" on the east side of the property, one building labeled "Brass Foundry" in the center of the property, a boiler house, machine shops on the south and west, and a "Japan Room" attached to the machine shop. Japanning was a popular metal coating used during that period and involved the use of asphaltic material dissolved in naphtha or turpentine.

The 1932 Sanborn maps indicate the southern machine shop had been converted to a steel foundry, and additional buildings including a steel machine shop had been added to the south. The locations of coke ovens within the main foundry building were shown. A grinding room and a Babbit room had been added to the southern machine shops. Babbit metals are soft alloys typically comprised of tin, lead, copper and/or antimony. A room labeled "Wash R'm; Oil R'm 1^{sto}" had been added to the foundry building, in the central part of the property. A building formerly labeled Casting Ware House had been converted to another machine shop.

The 1950 maps indicate additions had been made to multiple buildings. The main foundry continued to be located on the eastern side of the property (Areas 1 and 3). A steel foundry spanned the southern portion of the Site (crossing Areas 5 and 6). The southernmost building on the Site was the steel machine shop. Six underground fuel oil storage tanks are shown in the southeastern corner of the property, near the intersection of Goodwin and Moxon Streets. A hardening room was identified on the western machine shop, near the intersection of Pinevale and Hampshire Streets.

In summary, the Sanborn maps show the property has been used as a foundry and metal machining facility since at least 1911. The locations of certain historic USTs and processes on the property were identified.

2.4 HISTORICAL CITY DIRECTORY REVIEW

We reviewed historic city directories at the Connecticut Valley Historic Museum. The directories were reviewed for the Site from 1871 through 1986, in approximately 5-year increments. The directories list Chapman Valve under various addresses representing the property between 1877 and 1986. The street address changed from Pine Street (now known as Pinevale Street) to Hampshire Street over time. Listings for surrounding properties were primarily residential until 1950, at which point other commercial listings were present. Between 1950 and 1986, property use in the area included building and heating supply companies, a credit union, a trailer repair facility, and a modular home company.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

2.5 UNDERGROUND STORAGE TANK INFORMATION

We reviewed storage tank records for the Site and Site vicinity at the City of Springfield Fire Department. The City records include tank volume and installation or removal date, recorded by property address. Information on the locations of tanks within the property is not recorded. Installation and removal dates are not coupled; therefore, for larger properties, it is often not clear if installation and removal dates refer to the same tank. Fire Department records included the following listings:

Address	Tank Volume(s)	Date	Action
165 Pinevale St.	2 x 15,000 gallon	Unidentified	Installed
225 Goodwin St.	2 x 3,000 gallon	Feb. 1987	Removed
. "	1 x 6,000 gallon	~~	
٠.	12 x 20,000 gallon	"	. "
<6	4 x 25,000 gallon	"	
	1 x 8,000 gallon	"	٠,٠
66	2 x 15,000 gallon No. 2 oil		cc
	4 x 15,000 gallon No. 6 oil	•	"

We noted the 225 Goodwin Street address was historically applied to Chapman Valve properties both north and south of Goodwin Street. We believe some of the USTs in the above listing are for tanks associated with the land south of Goodwin Street, which is not part of the Site.

In 1987, ERT identified 19 out-of-service USTs at the Site (ERT, 1987). These are shown on Figure 2 as UST No. 1 through UST No. 19. A copy of ERT's Table 3-1: Tank Inventory is provided in Appendix C. UST No. 5 was a 100 gallon alcohol tank. UST No. 8 contained gasoline. The remaining tanks contained #2, #4 or #6 oil, or sludge. ERT, acting on behalf of Crane, engaged Clean Harbors to remove the 19 USTs in February 1987. Evidence of a release to the subsurface was identified during UST removals from three areas: Tank 1-4 Area; Tank 6-7 Area; and Tank 10-11 Area. MassDEP was notified of those conditions. Remedial investigations were performed by ERT, as described in Section 4.1.

As described in Section 2.3, the 1950 Sanborn Fire Insurance Map identified six underground fuel oil storage tanks at the southeastern corner of the property. Those tanks, later identified as UST Nos. 12 through 17, were removed in 1987 by Clean Harbors.

Ms. Bergdoll's representative, Marlene Fleming of Michelman and Bricker, stated that Ms. Bergdoll was unaware of any underground storage tanks (USTs) remaining at the Site. Known USTs were removed by Chapman Valve prior to her acquisition of the property.

[A S S O C 1 A T E S [

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

2.6 SITE HISTORY SUMMARY

In summary, the Site was occupied by a large manufacturer of metal valves from the 1870s until 1986. The property has been vacant since that time. Site manufacturing operations included: the casting of iron, steel, and brass parts; machining; welding; assembly; and finishing. Manufacturing operations were discontinued in 1986, and the above ground portions of the Site buildings were demolished in 2000. Manufacturing operations used a number of different oils and other hazardous materials (including metals, solvents, paints, and coolants). Nineteen USTs were formerly located on Site and were removed in 1987.

3.0 REGULATORY INFORMATION

We reviewed selected state information available from on-line databases and MassDEP files. In addition, we contacted officials at the City of Springfield Fire Department and Health Departments for information relevant to conditions at the Site.

3.1 LOCAL INFORMATION

We contacted the City of Springfield Health Department regarding records for the Site and Site vicinity. The records indicate that the Site and vicinity are serviced by public water and sewer service, and there are no private drinking wells within 500 feet of the Site.

The City of Springfield Fire Department had record of 26 underground storage tanks removed from the Site. The locations of USTs within the property are not identified, and some of the USTs may have been located on Crane property south of Goodwin Street. As indicated in Section 2.5, all known USTs were removed form the Site in 1987. The Site owner is not aware of current USTs at the Site.

3.2 STATE FILE INFORMATION

State information we reviewed included Massachusetts Geographic Information System (MassGIS) mapping of the area and MassDEP files.

3.2.1 MassGIS Mapping

We reviewed information obtained from the Massachusetts Geographic Information System (MassGIS), which is available on-line¹. We conducted an on-line review of the Massachusetts Department of Environmental Protection (MassDEP) Priority Resource Map for the Site and Site vicinity on January 4, 2010. The Site is not located:

• Within a Zone II or Interim Wellhead Protection Area for a public water supply;

¹ http://maps.massgis.state.ma.us/massgis viewer/index.htm

| ASSOCIATES |

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

- Within the Zone A of a Class A surface water body used as a public water supply; or
- Within a Potentially Productive Aquifer (PPA) that has not been excluded as a Non-Potential Drinking Water Source Area (NPDWSA).

The Massachusetts Contingency Plan (MCP) has established reporting classifications for potential releases to soil and groundwater. Based on criteria outlined in the MCP and information presented in Section 3.1, the Site groundwater reporting classification would be RCGW-2. The Site soil classification would be RCS-1 for release reporting due to the presence of residential properties within 500 feet of the Site.

3.2.2 MassDEP Files

We reviewed the regulatory agency file present at the MassDEP office in Springfield, Massachusetts. This file includes information for the facility dating from the 1970s through 2009. Multiple environmental conditions have been identified at the Site and have been assessed under Release Tracking Number (RTN) 1-00170. The Site has been regulated under the Massachusetts Contingency Plan (MCP) since the late 1980s. Section 4.0 provides a summary of prior environmental reports for the Site.

Several statements from former employees of Crane are present in the MassDEP files and allege improper disposal of waste on the property. One employee alleged that on December 15, 1976, a release of approximately 8,000 gallons of No. 4 oil occurred while a tank was being filled. The release occurred to the ground surface near Department 40. Some of the oil reportedly entered a storm drain and discharged into the Chicopee River. The employee was allegedly directed to apply sorbent materials to the released oil, then to sweep up and dispose of release-related wastes in a concrete-sided hole where a crane had formerly been located in Department 7. The area was then reportedly covered with soil. This area was subsequently investigated (see Section 4.0). Employees also alleged that instead of performing equipment maintenance, additional oil was routinely added to leaking machines. One employee indicated that, in approximately 1975, over 350 gallons of oil per week was reportedly added to machinery in Department 7 alone. Other statements indicated that containers of waste oil would be placed on a train or truck and driven along the tracks with the spigot open, releasing the contents along the tracks.

In response to the allegations, MassDEP (then known as the Massachusetts Department of Environmental Quality Engineering) requested an assessment of the Site at the time of facility closure in 1986. Section 4.0 summarizes work performed by ERT and others in response to these conditions.

An April 27, 1999 memorandum, documenting a MassDEP reconnaissance of the Site, indicates a tunnel about eight feet high and eight feet wide contained steam pipes and ran approximately 200 feet through the center of the property. The memorandum indicates the

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

tunnel was to be filled with brick rubble upon completion of the remediation. Site buildings had been demolished by that time. Piles of brick, lumber, and oil-stained wood blocks (flooring) were present on site. The wooden materials were to be transported off site for disposal. Most of the monitoring wells had been destroyed during demolition activities. The Crane Company still owned the property at that time.

In response to reported petroleum releases identified during UST removals in February 1987, MassDEP issued a Notice of Responsibility to the Crane Company on March 27, 1987, and the Site was issued Release Tracking Number 1-00170. Significant environmental reports issued for the Site are listed in the references provided in Section 9 of this report.

A Completion Statement for RTN 1-00170 was received by the MassDEP on May 21, 1998. Recent information in the file (MassDEP, 2009 and EI, 2009) indicates a Response Action Outcome (RAO) is anticipated to be filed by the current owner.

4.0 SUMMARY OF PRIOR ENVIRONMENTAL INVESTIGATIONS

Prior environmental investigations have been conducted at the Site by various parties.

A Notice of Audit Findings/Notice of Noncompliance letter issued by MassDEP on July 1, 2003 (MassDEP, 2003) indicated the following remedial response actions had been conducted at the Site between 1986 and 1998:

- advancement of over 40 soil borings, including five locations identified as background;
- installation of 28 groundwater monitoring wells and two LNAPL recovery wells;
- collection of up to five rounds of groundwater samples from Site monitoring wells;
- analysis of soil and groundwater samples for various parameters;
- a survey of potentially PCB-containing electrical equipment remaining on Site;
- collection and off-site disposal of approximately 4,625 gallons of PCB-containing transformer oil;
- off-site disposal of over 43 tons of oil- and PCB-impacted wooden flooring;
- vacuuming and bailing an unspecified volume of LNAPL; and
- excavation and off-site disposal of approximately 2,425 cubic yards of oil-impacted soil.

A summary of information from prior reports is provided in the following sections. Selected information from prior reports, including boring logs, data tables and Site plans, are provided in Appendix C.

4.1 ERT ASSESSMENT, 1986-1988

ERT completed a Phase I Environmental Review in 1986, during which they identified transformers that could contain PCB oils and 19 out-of-service underground storage tanks

[A S S O C I A T E S [

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

(USTs) at the Site. The UST locations are shown on Figure 2 as UST No. 1 through UST No. 19. Table 1 provides a summary of the tank locations, capacities, and contents. The 19 USTs were removed by Clean Harbors in February 1987. Petroleum releases were identified in three of the UST areas at the time of tank removal. Free product was visible on the water surface in the UST 1-4 tank grave and was removed via vacuum truck on several occasions. Oily soil was observed in the vicinity of UST 6-7 and UST 10-11.

ERT prepared a Remedial Action Plan to address the releases identified during UST removals. Their assessment included installation of 19 groundwater monitoring wells (MW-1 through MW-19), and the collection and analysis of soil and groundwater samples. Samples were analyzed for total petroleum hydrocarbons (TPH), PCBs, VOCs and/or metals. The soil samples contained TPH ranging from 231 to 4,570 mg/kg. The current S-1/GW-2,3 standard for TPH in soil is 1,000 mg/kg, which was exceeded at MW-4 (15-16.5'), MW-5 (10-11.5'), MW-7 (0-1.5'), MW-8 (1-2'), MW-9 (0.5-1.5'), MW-12 (0.5-1.5'), and MW-17 (0.5-1.5'). PCBs were not detected in the soil boring samples.

According to a MassDEP letter (MassDEP, 1988), department staff met with former Crane employees in January 1987 to discuss historic waste disposal practices at the facility. Historic practices allegedly included releasing waste oil from a 500 gallon storage tank along a length of railroad tracks on the property and in the yards of former Departments No. 7 and 48; disposal in the former location of the Dept. 7 scale of oil-soaked debris from an approximately 8,000 gallon oil spill that occurred on December 15, 1976; and release of an estimated 20,000 gallons of oil per year from leaking machinery. ERT investigated the facility grounds and did not see evidence of such widespread oil release. They did identify several locations where below-grade pits or troughs contained oil. In Building 23, an oil bath set into the floor contained approximately two feet of oil. Response actions were taken to remove the oil from the locations where it was observed.

To address the allegations of former releases along the railroad tracks, ERT installed 14 monitoring wells along the railroad alignment. Petroleum concentrations in groundwater at one well, MW-2, were elevated (24 mg/l TPH). Concentrations at the other 13 locations ranged from 2 to 10 mg/l TPH, which ERT considered typical "background" levels for industrial property. We note that the current GW-2/GW-3 standard for TPH is 5 mg/l. This was exceeded at MW-1 through MW-5 and MW-8 through MW-11 in 1987. Light nonaqueous phase liquid (LNAPL) was identified at the Site in 1986, when approximately six inches of floating product was measured in monitoring well MW-4. That well was located in Area 2, near the former UST 1-4 area.

PCBs were not detected in Site groundwater. Several metals were detected; however, those results were not confirmed by later testing and are believed to be false positives associated with the use of unfiltered samples. TPH and several petroleum-related VOCs were present in groundwater in the former UST areas.

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

Based on their assessment, ERT recommended installation of an oil recovery system in the UST 1-4 Area and removal of oily soil from surficial stained areas, as well as former UST areas 1-4, 6-7, and 10-11.

ENSR installed an oil recovery system in UST 1-4 Area; however, it did not function properly and was shut down shortly after installation.

4.2 CON-TEST ASSESSMENT 1991

Con-Test completed a Phase II Comprehensive Site Assessment of the Pinevale Street property in 1990-1991. Their report included: assessment of wood block flooring materials in Buildings 25 (Department 7), 40 (Department 23), and 48 (Department 48); installation of three groundwater monitoring wells (CMW-30, CMW-31S, and CMW-31D); and the collection and analysis of soil and groundwater samples. Soil samples were collected from below concrete building slabs, and from the areas of former USTs 1-4, 6-7, and 10-11.

Two bedrock cores were drilled, near locations CMW-30 and CMW-31. Bedrock was identified as reddish-brown arkosic conglomerate and sandstone, and was present at a depth of approximately 20 feet below grade on the western side of the property. Boring CMW-31(S,D) is located in the northwestern corner of the property, near Pinevale Street. The depth of bedrock on the eastern side of the property was identified as five to eight feet below grade.

Con-Test collected surface soil samples from 10 foot by 10 foot grid patterns in two areas of oily staining on the property. Those areas were subsequently excavated (see Section 4.3.3); therefore, the data are not representative of current Site conditions.

Groundwater sampling by Con-Test was conducted with bailers, as was typical at the time. Samples were analyzed for VOCs by Method 624, semivolatile organic compounds (SVOCs) by Method 625, TPH, and RCRA 8 metals. Results indicated TPH was present at CMW-30 at 1.2 mg/l. Low levels of arsenic, barium and chromium were present in groundwater samples from MW-7 and MW-14. The report does not indicate these samples were filtered. Based on the their age and the methodology used, groundwater analytical results from the Con-Test investigations are not considered representative of current Site conditions.

4.3 ATC ASSESSMENT 1995-1998

Between 1995 and 1998, ATC performed MCP assessment activities on behalf of Crane for the release tracked under RTN 1-00170, culminating in the submittal of a Phase II Comprehensive Site Assessment (ATC, 1998) with associated risk characterization. ATC's assessment identified seven areas of petroleum impacts to soil: ERT Area # 2; ERT Area # 3; UST 1-4 Area; UST 6-7 Area; UST 10-11 Area; and oily stained surface areas EXC-2 and EXC-3. These are discussed below.

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

ATC's activities were directed primarily at meeting the conditions of a waiver approval letter from MassDEP dated March 31, 1994. Release conditions that letter identified as requiring response actions included the former UST locations, the alleged disposal of waste oil along railroad tracks on the east side of the Site, and potentially large volumes of oil leaking from machinery year after year. The conditions of the waiver approval included biannual groundwater monitoring until remediation was complete and submittal of annual status reports to MassDEP. ATC prepared annual status reports for the years 1994, 1995 and 1996, and included a 1997 annual status report as part of the Phase II Comprehensive Site Assessment (ATC, 1998).

ATC's response actions included assessment and remediation activities. In September 1995, 467 tons (about 311 cubic yards) of impacted soil were removed from UST Areas 1-4, 6-7, and 10-11. An additional 1,542 tons (about 1,030 cubic yards) were removed in July 1997 and 920 tons (about 613 cubic yards) in December 1997. These activities are described in more detail in the following sections.

4.3.1 Soil Testing

ATC performed 15 borings (B-A through B-O) across the property in October 1996. Soil samples from the borings were analyzed for VOCs, SVOCs, PCBs, and RCRA metals. Copies of ATCs data summary tables are provided in Appendix C. Samples were analyzed for VOCs, total petroleum hydrocarbons (TPH), and PCBs. No constituents were identified in soil above the applicable standards in effect at the time.

4.3.2 Groundwater Monitoring

MassDEP's waiver approval letter required biannual groundwater monitoring to be conducted, including collection and analysis of groundwater samples, as well as assessment of groundwater flow direction. ATC performed several rounds of groundwater sampling, including up to 19 site monitoring wells in each round. The samples were analyzed for VOCs, TPH, and/or PCBs. VOCs were not detected. Separate phase petroleum product was identified in three wells. Monitoring well locations were selected primarily to be downgradient of former UST areas in the southeastern and central portions of the property.

Groundwater samples were analyzed for VOCs, total petroleum hydrocarbons (TPH), and PCBs. The only constituent detected above currently applicable MCP Method 1 GW-3 groundwater standards was TPH. The current GW-3 standard for TPH is 5 mg/l; TPH was detected at 7.5 mg/l at well MW-5, located near former USTs 1-4 in Area 2.

The 1998 Phase II Report indicated contaminant concentrations in groundwater did not exceed applicable standards at that time.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

ATC performed slug tests in monitoring wells MW-2, MW-13, and MW-36 to determine the hydraulic conductivity of the aquifer. Their results ranged from 0.096 to 0.336 feet per day. These values are consistent with silty to clayey sands.

In August 1996, ATC gauged 18 site monitoring wells, using an interface probe. Based on their measurements, ATC calculated groundwater flow direction below the Site to be to the northwest or north-northwest, towards the Chicopee River. The hydraulic gradient was estimated to range from 0.03 feet per foot in the southeast portion of the property to 0.003 feet per foot near the western property line. The depth to till/bedrock below the Site was identified as approximately 21 feet.

4.3.3 UST 1-4 Area Assessment and Excavation

NAPL was detected on at least one date each in wells MW-4 and MW-5; both located near former USTs 1-4, which had previously contained No. 4 and No. 6 oil. Culvert well CW-1, in the same area, exhibited a discontinuous sheen and oily globules in October and November 1995, and January and March 1996.

In October 1996, under ATC's direction, CYN excavated test pits downgradient of the former UST area. ATC reported that black oil was observed at a depth of approximately 8.5 to 13 feet below grade, in a medium to coarse sandy material. They collected twelve soil samples, S-1 through S-12, from the perimeter of the former UST 1-4 excavation area. Three of the samples, S-1, S-3, and S-4, were analyzed for TPH and VOCs. The VOCs were analyzed by a gas chromatography method without mass spectrometry, which is not considered an acceptable analytical method by current standards due to uncertainty in compound identification. We therefore do not consider the VOC results usable for current site characterization or risk assessment. TPH results in the three samples ranged from 300 to 3,100 mg/kg, reported as No. 2 or 4 oil or diesel fuel. A detail plan prepared by ATC in January 1998 showing the locations of those samples is provided in Appendix C.

ATC installed three additional wells in the UST area in November 1996 to delineate the extent of the oil. In July 1997, CYN excavated approximately 1,540 tons (about 1,030 cubic yards) of oily soil from the UST 1-4 area and disposed of it off-site. The approximate location of this excavation is shown on Figure 2. ATC referred to this excavation as EXC-1. Soil was removed from depths of approximately 6 to 13 feet below grade. Impacts were located below the water table; therefore, dewatering was required during excavation. Separate phase product flowed into the excavation at some points. The dewatering system therefore included an oil-water separator and activated carbon canisters which the groundwater was passed through prior to discharge to the sewer. Post-excavation samples S-1 through S-6 were analyzed for TPH and PAHs. Results indicated residual TPH/PAH remained in the subsurface.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

In December 1997, the excavation was extended to the south, removing 852 tons (568 cubic yards) of soil from around the concrete cistem. The final excavation was approximately 110 feet long, 60 feet wide, and 13 feet deep. The footing of the cistern on the south side of the excavation was not exposed during the excavation; therefore, petroleum impacted soil was considered unlikely to be present below that structure. Oily soil was observed in the subsurface on the east, north, and west, but further excavation could not be conducted in those directions due to the presence of structures which would have been undermined. On the west side of the excavation, visibly impacted soils remained below the utility tunnel. Footings for the tunnel were exposed at approximately ten feet below grade. Up to three vertical feet of oil-impacted soil remained below the tunnel, at locations which could not be excavated due to structural concerns. During the excavation, LNAPL was observed to be entering the excavation from beneath the tunnel. Beyond the tunnel to the west was Building 40, which has now been demolished. Petroleum may remain in soil below that building as well. ATC estimated 48 cubic yards of impacted soil may remain below structures in the UST 1-4 Area.

Following the December 1997 excavation, soil samples were collected from the excavation sidewalls and screened with a Petroflag TPH field test kit. Screening results indicated TPH remained at concentrations above 50 ppm on the southwest and east sidewalls. Confirmation samples S-7 through S-12 were analyzed for TPH analysis. EPH concentrations in soil remaining on the east sidewall exceed current S-1/GW-2,3 standards.

4.3.4 Additional Soil Excavation

Remedial soil excavation was conducted in two others areas of the Site by CYN in November 1996. Both areas had oily surficial staining confirmed by laboratory testing to contain petroleum. The excavations were performed to remove soils identified as containing greater than 500 mg/kg TPH. Approximately 100 cubic yards of oily surface soil was removed from the vicinity of an overhead crane in the northeastern corner of the Site (shown on Figure 2 as ERT Area #2). The excavation was advanced to a depth of 1.5 to 2 feet over an approximately 20 foot by 70 foot area. An additional 13 cubic yards of oily soil was removed from along the railroad tracks east of Building 10 (ERT Area #3 on Figure 2), from an approximately 18 foot by 20 foot area, one foot deep. The excavated material was transported off-site for disposal.

Additional excavations of oily soil in the southeastern portion of the property were performed by Civetti in December 1997. They removed 23 tons of soil from between a railroad spur and the scale house (EXC-2), and 45 tons of soil from outside Building 25 (EXC-3). The EXC-2 excavation measured approximately 25 feet long by 8 feet wide by 9 feet deep, and removed oil-impacted sample location B-J. EXC-3 removed soils identified as containing up to 17,500 mg/kg TPH (1988 test pit TP-3). A post-excavation soil sample from EXC-2 contained 29 mg/kg TPH. At EXC-3, a concrete vault was encountered during excavation and remains below grade in Area 5. The vault was 58 feet long, 8 feet

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

wide, and 5 feet deep, and was located approximately six feet below grade. The structure was scraped clean and backfilled; therefore, no confirmation samples were collected from EXC-3.

4.3.5 PCB Testing

In September 1996, ATC contracted with Standard Electric Testing Company, Inc. to conduct a survey of electric transformers and switches remaining on the property. Their work included testing oil from remaining electrical equipment for PCBs. Oil samples were collected from six transformers identified in Buildings 10 and 42, and nine pole-mounted transformers located around the property. Thirty-five samples from electrical switches in Buildings 42 and 48 were also analyzed. PCBs were reported in electrical equipment in Building 10 (Area 3 Machine Shop) and in Buildings 42 and 48 (both in Area 2). PCB concentrations of up to 80 parts per million (ppm) were reported. CYN Environmental Services removed transformers and switches, including approximately 4,625 gallons of transformer oil, from the Site in October 1996. A release of PCB oil to the floor of Building 48 was cleaned up through scarification to the regulatory level of 10 ug/100 cm².

ATC's report identified the maximum soil PCB concentration at the Site as 2.64 mg/kg in a stockpile from the UST No. 10/11 excavation at the southeastern end of the property. PCB concentrations in soil from excavations in other portions of the Site ranged from 0.03 to 0.56 mg/kg.

4.3.6 Hydrogeologic Setting

During a review of drainage features at the Site, ATC identified a deep drain with an oil/grease trap and a sediment trap. That feature was located near the northern limit of the Site, where the facility drain lines entered the City sewer system at reportedly 14 feet below grade (ATC, 1998).

4.3.7 Risk Assessment

ATC completed an MCP Method 3 Risk Characterization for the Site (ATC, 1998). Potential exposures evaluated included: security guard and trespasser contact with soils; construction worker contact with soil, dust, and groundwater; and residential exposure to soil, dust, and homegrown produce. That report concluded there was not an Imminent Hazard present and Site conditions posed No Significant Risk under current or foreseeable future uses.

ATC's report concluded that all identified sources of petroleum impacts to Site soil had been removed through interim measures, and the conditions of MassDEP's waiver approval letter had been met.

ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

4.4 TETRA TECH NUS SITE INSPECTION, 2000

Tetra Tech NUS (NUS) conducted a site inspection of the property in 1999-2000 on behalf of the Region I U.S. Environmental Protection Agency (EPA). At the time of the NUS site reconnaissance, many of the Site buildings had been demolished, monitoring wells had been abandoned, and asbestos abatement was being conducted in the subsurface utility trench. Piles of oily wooden floor blocks were observed on the eastern corner of Building 25 (in Area 5), and oily staining of surface soil was noted in the north-central portion of the Site within the footprint of the former iron foundry.

Sample collection and analysis was not conducted as part of the NUS study. Based on an assessment of prior studies by others and comparison to "background" locations, NUS identified the following constituents of concern at the Site soil: PAHs, arsenic, barium, cadmium, chromium, lead, mercury, selenium, and PCBs. The constituents of concern identified for groundwater were: methylene chloride, arsenic, cadmium, chromium, copper, lead, mercury, zinc, and PCBs. We note that ATC eliminated methylene chloride as a constituent of concern in their risk characterization due to the fact that it was also detected in the method blank. Methylene chloride is a common laboratory contaminant.

4.5 ATC AUDIT RESPONSE, 2003

MassDEP issued a Notice of Audit Findings/Notice of Noncompliance (NON) to Crane on July 1, 2003, based primarily on the 1998 Phase II report. The NON identified several areas in which MassDEP felt additional assessment was required. ATC conducted supplemental investigations in August-October 2003, and issued a Post-Audit Completion Statement and Addendum Risk Characterization (ATC, 2003b).

ATC also issued a memorandum regarding the condition of the utility tunnel (ATC, 2003a). MassDEP had identified several locations where damage to the tunnel had caused openings which posed a physical hazard. In response, ATC oversaw the backfilling of three shallow openings with rock and cement, and construction of concrete slabs over eight deep openings above the tunnel.

To characterize metals in soil conditions at the Site, ATC collected 14 shallow soil samples and had them analyzed for Priority Pollutant 13 metals. Analytical results for the samples (BF-1, BF-2, B-2 to B-18, IMS-1 and IMS-2) are provided in Appendix C on a table titled Table 2: Summary of Soil Analytical Data: Metals prepared by ATC. Elevated lead concentrations, 641 to 1,370 mg/kg, were reported at B-10, B-11, and BF-2, in the six to twelve inch depth range at each location. Other metals detected above current MCP Method 1 standards included: cadmium at B-8, B-11, and BF-2; chromium at B-10 and B-11; nickel at B-8, B-10, B-11, BF-1, and BF-2; and zinc at BF-2.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

ATC collected two soil samples from an area of black surface soil staining. The samples were submitted for EPH and microscopic coal ash analysis. Results indicated several polycyclic aromatic hydrocarbons (PAHs) were present. However, the sample contained a moderate loading of anthracite coal and coal ash; therefore, ATC concluded the PAHs were exempt from reporting under the MCP.

Soil gas testing was conducted at six points (SV-1 through SV-6) to assess the potential for vapor intrusion into overlying buildings. MassDEP had indicated that historic petroleum concentrations in groundwater from monitoring wells MW-8 and MW-27 (both in current Area 2) indicated the potential for vapor intrusion. PID screening results at locations SV-1, SV-3, SV-4, and SV-6 ranged from 20 to 29 ppmv, exceeding the MassDEP screening levels. Soil gas samples from those four locations were therefore analyzed for air-phase petroleum hydrocarbons. Results (provided on Table 4 in Appendix C) were below MassDEP published levels indicative of the potential for significant vapor migration. ATC therefore concluded that the vapor migration pathway at the Site was not significant.

During a Site walkover, MassDEP had identified oily staining at the surface in soil on the eastern side of Building 10 and at several locations within the footprint of Building 23. The locations within Building 23 were assumed to be associated with historic machinery, and may be cutting oil and/or hydraulic oil. ATC oversaw removal of oily material from two locations in Building 10 and one location in Building 23. These locations are shown on a plan titled "Addendum Risk Characterization" prepared by ATC, provided in Appendix C. Following removals, the remaining concrete slabs were power-washed.

The risk characterization provided in the post-audit report concluded that petroleum hydrocarbons in the subsurface did not pose the potential for significant migration into foreseeable future buildings, and a condition of No Significant Risk had been achieved for the Site.

4.6 OTO ASSESSMENT, 2006

In July 2006, OTO observed 18 backhoe test pits performed through the building floor slabs to depths between 5 and 15 feet to evaluate potential releases of oil and/or hazardous materials beneath the buildings. The test pits were performed by BGL Corporation and were observed by an OTO engineer. Test pits locations are shown on Figure 2.

The concrete floor slabs were observed to vary between approximately 6 to 16 inches in thickness. Oil saturated wood blocks were present over the concrete slab in some limited areas. In addition, outside the former building footprints, the surface layer consists of 4 to 6 inches of asphalt over a concrete slab.

Oil impacted soils were encountered directly below the concrete slab in three test pits (TP-3, TP-12, and TP-13) in the former Machine Shop (Building 10), in the central portion of the

I A S S O C I A T E S |

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

Site. The layer consisted of between 6 to 12 inches of black sand and gravel, which exhibited a petroleum odor. No positive photoionization detector (PID) readings were recorded in samples collected of the stained gravel or underlying soil.

Approximately 20 inches of fill, consisting of a mixture of brick, coal ash, and slag, was encountered in TP-14. This test pit was located in the east central portion of the Site within the footprint of the former machine shop.

Test pit TP-15 was located in the vicinity of two former underground storage tanks (USTs 10 and 11) in the southeast portion of the Site. The test pit contained approximately seven feet of fill underlain by a concrete pad, which is apparently associated with the former USTs. No petroleum odors, staining, or PID readings were encountered in this test pit.

At test pit TP-18, soils below a depth of eight feet exhibited a petroleum odor. The soils were stained gray and exhibited a PID screening measurement of 123 parts per million by volume (ppmv). This test pit was located in the former brass foundry, located in the west central portion of the Site.

Based upon Site observations, six soil samples were submitted to Con-Test Analytical Laboratory (Contest) for analysis. Selected samples were analyzed for extractable or volatile petroleum hydrocarbons (EPH/VPH), polychlorinated biphenyls (PCBs), and RCRA 8 metals. Laboratory data are summarized in Tables 2 and 3.

Several EPH compounds and PCBs were detected above reportable concentrations in the shallow sample from test pit TP-3. As noted above, a layer of black sand and gravel, which exhibited a petroleum odor, was observed just below the concrete floor slab in test pits TP-3, TP-12, and TP-13.

Lead and arsenic were detected above reportable concentrations in the shallow sample from test pit TP-16. This sample was collected below the concrete slab of the former Iron Foundry in the northeast portion of the Site.

Various EPH and VPH compounds were detected above reportable concentrations in the 10 to 12 foot sample from TP-18. This sample exhibited a petroleum odor and elevated PID reading.

4.7 WJF RELEASE ABATEMENT MEASURE, 2006-2009

On behalf of the current property owner, Goodwin Realty, Inc., WjF Geoconsultants, Inc. (WjF) conducted a Release Abatement Measure (RAM) and filed a RAM Completion Report in February 2009. The RAM was conducted to address the presence of lead, arsenic, PCBs, and petroleum above Reportable Concentrations at various locations on Site (see Section

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

4.6). MassDEP was notified of the conditions and indicated response actions should be conducted under the previously issued RTN.

In December 2006, WjF performed soil borings TPB-1 through TPB-16 to delineate the extent of the conditions, which had been identified during OTO's 2006 investigation. PCBs in the vicinity of test pit TP-3 were successfully delineated through borings TPB-11 through TPB-16. They installed five groundwater monitoring wells (MW-201 through MW-205) in the vicinity of former Buildings 4, 5, and 11. Consistent with prior consultants, WjF found the groundwater flow direction below the Site to be northeasterly. A copy of their groundwater contour plan dated May 12, 2008 is provided in Appendix C.

Test pits performed in the western portion of Building 10 found petroleum-impacted soil remains in the subsurface in the vicinity of test pits TP-3, TP-12 and TP-13, as delineated by borings TPB-12B, TPB-14 and TPB-16. The locations of these borings and test pits were removed during a RAM excavation conducted in June 2007. Additional excavation was conducted to the west in March 2008. The locations of those test pits, borings, and excavations are shown on a Site plan prepared by WjF in 2009, and provided in Appendix F. A total of 161 tons (approximately 100 cubic yards) of oil-impacted soil and concrete rubble were transported off-site for disposal.

Environmental Insight (EI), on behalf of the current owner, submitted a proposed risk characterization approach to MassDEP on June 24, 2009. EI indicated they were working with WjF towards an RAO for the Site. Their proposed risk characterization approach included the use of both old and new analytical data to represent current Site conditions. A MassDEP memorandum dated August 11, 2009 indicates WjF is in the process of completing a Response Action Outcome (RAO) for this Site. In their memo, MassDEP approved the limited risk characterization approach presented by EI, with the conditions that data be reviewed for adequacy and a complete risk characterization (rather than another addendum) be completed.

5.0 SUBSURFACE INVESTIGATIONS AND TESTING

We conducted a subsurface testing program to evaluate whether oil or hazardous materials are present in Site soil or groundwater at levels of regulatory significance. Our assessment activities included collection and analysis of soil samples from borings and test pits, installation of groundwater monitoring wells, and collection and analysis of groundwater samples. These activities are described in the following sections.

5.1 SOIL BORINGS AND MONITORING WELL INSTALLATION

Between September 22 and October 28, 2009 an OTO engineer observed the advancement of 43 soil borings (CM-15 through CM-55; CM-23A and CM-40A) at the Site. Fourteen of the borings (CM-17, CM-22, CM-25, CM-34, CM-36, CM-37, CM-38, CM-39, CM-41, CM-

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

42, CM-43, CM-45, CM-50 and CM-53) were completed as groundwater monitoring wells. The wells were constructed with 2-inch diameter PVC well screens placed to span the groundwater table. The annular space between the well screen and borehole wall was backfilled with filter sand, and a bentonite layer was placed above the screened interval to provide a surface seal. Details of monitoring well construction and subsurface materials encountered are presented on the boring logs in Appendix D.

The borings were advanced by Seaboard Environmental Drilling of Chicopee, Massachusetts, using hollow-stem auger techniques. Soil samples were logged by OTO and screened for total organic vapors using a photoionization detector (PID) with a 10.6 eV lamp. The PID was calibrated to isobutylene and set to a response factor of 0.6 to read as benzene.

Borings were advanced to depths ranging from 4 to 34.5 feet below grade. In some cases, the borings penetrated remaining concrete building foundations. Groundwater was generally encountered at depths ranging from six to ten feet below grade across the Site but was deeper (17 feet below grade) in the southwestern portion of the Site (Area 6), where the grade rises steeply.

Upper materials encountered in the borings consisted primarily of two to twelve feet of sandy fill material underlain by sand and gravel. Fill included coal, ash, brick, concrete, asphalt, and wooden materials. The sand and gravel unit ranged from approximately seven to twelve feet thick and was underlain by very dense red-brown till. In some locations, such as along the eastern sides of Areas 3 and 5, the till was present at shallow depths (starting from one to four feet below grade) and was overlain by just a few feet of sandy fill. In central portions of the Site, the till unit was encountered beginning at depths of 8 to 27 feet below grade, with the deeper till located in the northern portion of the property. Auger refusal presumed to be on bedrock was encountered at depths of 7.5 feet (CM-32 in Area 3, on the east side of the property) to 34.5 feet (CM-15 in Area 1). Boring logs are included in Appendix D.

5.2 TEST PITS

On November 12, 2009, BGL Corporation of Agawam, Massachusetts excavated seven test pits (OTP-1 through OTP-7) on Site. Test pit locations are shown on Figure 2. The excavations were performed primarily to observe fill materials present in above-grade stockpiles on Site and in the subsurface utility tunnel. The stockpiled material reportedly came from an off-site source and was imported to the property in recent years. The nature of the fill was unknown. Similarly, the utility tunnel that traverses the property has been backfilled in places. Test pits in the tunnel were performed to observe the nature of the fill used and to identify asbestos insulation, if still present on the abandoned steam lines.

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

Test pit excavations were observed by an OTO environmental scientist. Our observations are documented on test pit logs provided in Appendix F. Large amounts of fill material were observed, including brick, concrete blocks, concrete chunks with reinforcing bar, and ash. Building slabs and other subsurface concrete structures were encountered at several locations. Six to eight inch diameter cast iron pipes were observed at several locations inside what is believed to have been the utility tunnel. Insulation was not observed on the pipes. Asbestos in Site media is the subject of a separate report.

Three additional test pits were conducted in the vicinity of a box truck located in a debris pile on the western side of the Site. The truck appears to have been abandoned on Site, then partially buried by sandy fill materials. During our investigations, the box truck contained miscellaneous debris including plywood, vinyl siding, ceramics, one empty drum, and one drum partially filled with liquid. There was a solvent odor inside the trailer. To assess the possibility of a solvent release to the surrounding soils, three soil samples were collected, one each from the east, west, and below the trailer (samples BT-E, BT-W, and BT-B, respectively). The soil samples were collected from immediately below the Building 23 concrete slab.

5.3 SOIL PILES

Multiple soil/debris piles are present on the Site and are reportedly imported fill brought to the property in recent years. The source of the material could not be identified. Three soil samples (DP-1 through DP-3) were collected from debris piles on the western side of the property for analysis as described in Section 5.4. The material in the piles was primarily sand, with fill materials including bricks, concrete, and other rubble.

5.4 SOIL ANALYSES

Soil samples were collected during soil borings and test pit excavations. Soil testing performed during this program included field screening with a PID and laboratory testing for parameters indicative of constituents of concern at the Site, as described in the following sections.

5.4.1 PID Screening

The soil samples were logged by an OTO environmental scientist and screened in the field for VOCs, using a TEI Model 580B PID. The PID provides a semiquantitative indication of total VOCs in a sample. The samples were collected into containers with headspace into which volatile compounds could migrate. The containers were agitated and then allowed to develop for a minimum of five minutes. The headspace was then screened with the PID, and the highest reading measured by the PID was recorded. Screening results are presented on the borings logs in Appendix D.

ASSOCIATES

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

PID readings were nondetect in most of the samples collected from the Site. Borings in which soil samples had significant non-zero readings included: CM-22 (13-19 feet); CM-23 (7-15 feet); CM-25 (11-17 feet); CM-38 (9-15 feet); and CM-43 (10-17 feet). The highest PID readings were at CM-22, which had a headspace reading of 136 parts per million by volume (ppmv) in the 17-19 feet sample, and CM-43, which had a 131 ppmv reading for the 10 to 12 foot sample. CM-22 was performed through the slab of Building 25, in Area 6. CM-43 was performed through the slab of Building 5, in Area 4.

The three debris pile samples (DP-1 through DP-3) had PID readings of zero.

Sample BT-E, collected from the east side of the abandoned box truck, had a PID reading of 61 ppmv. Samples BT-W and BT-B had PID readings of zero.

5.4.2 Laboratory Analyses

Selected soil samples from the borings and test pits were submitted under chain-of-custody to Con-Test Analytical Laboratory (Con-Test) of East Longmeadow, Massachusetts where they were analyzed for EPH, VPH, PCBs, semi-volatile organic compounds (SVOCs) by EPA Method 8270, and metals analyses. Soil analytical data are summarized in Tables 4 through 6. Analytical results are discussed below; copies of the laboratory reports are included in Appendix E.

Petroleum Hydrocarbon Fractions and Target Analytes

Two petroleum hydrocarbon fractions (VPH C9-C10 aromatics and EPH C9-C18 aliphatics) and related target analytes (acenaphthylene and/or 2-methylnaphthalene) were detected at concentrations above RCS-1 standards in three soil samples: CM-22 (15-17 feet), CM-38 (11-13 feet), and CM-43 (10-12 feet). Boring CM-22 was located in the central portion of the former Steel Machine Shop (Building 25) on the southern portion of the Site. Boring CM-38 was performed immediately downgradient of former UST No. 6-7, near Pinevale Street. Boring CM-43 was performed in the Brass Foundry, on the western side of the Site.

The constituents detected in these three samples are consistent with a No. 2 fuel oil release. These samples were collected from greater than 10 feet below grade, in sand and gravel interpreted as native. Fill materials such as ash were not observed in these soils. The EPH and VPH detections therefore appear to be associated with a petroleum release(s). Each of these samples exhibited a PID reading on the order of 100 ppmv. As shown on the boring logs, the impacts appear to be localized within the water table smear zone, based on significantly lower PID readings at deeper and shallower depths. This indicates the borings are likely not placed within the release locations, but that petroleum migrated to these locations along the water table.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

A significant amount of petroleum testing has been conducted during previous environmental studies at the Site. Our EPH/VPH testing was therefore limited to those locations that may represent concentrations not consistent with prior investigations.

Of the eight test pit soil samples analyzed for EPH, one (BT-E) contained significant levels of petroleum in the EPH and VPH ranges. The EPH C9-C18 aliphatic concentration at this location was 9,800 mg/kg; the Reportable Concentration for this constituent is 1,000 mg/kg.

Five of the eight test pit soil samples contained PAHs above Reportable Concentrations, while EPH aliphatic and aromatic fractions were not present at significant concentrations in those samples. This pattern is typical of ash, rather than petroleum, as a source. The test pit logs (TP-4, TP-6, TP-8, DP-1 and DP-2) indicate a significant amount of debris was encountered at these locations.

Volatile Organic Compounds

One soil samples collected from a tunnel test pit (TP-6) and three from the debris piles near the trailer (BT-B, BT-E, and BT-W) were analyzed for volatile organic compounds (VOCs). These samples were selected for analysis based on the observation of an abandoned trailer containing drums and a VOC odor inside the trailer. The VOC samples were preserved in water for low level analysis and methanol for high level analysis. VOCs were not detected in these soil samples.

Metals

In a 2003 audit letter, MassDEP indicated they considered previous assessment of metals in soil at the Site inadequate. As discussed in Section 4.5, ATC had an additional 14 soil samples from the Site analyzed for metals to address MassDEP's concern. However, given the Site's size and history, we felt this was an area requiring significant further assessment. We therefore submitted 40 soil samples from borings and seven from test pits at the Site for analysis of metals suites. Several metals were detected at the Site at concentrations exceeding applicable RCS-1 reportable concentrations, as described below.

Barium and cadmium were detected above their respective RCS-1 standards in three of the 52 samples tested: CM-40 (0-2'), CM-53 (0-2'), and CM-54 (0-2'). At locations CM-53 and CM-54, the lead concentrations also exceeded the RCS-1. These three borings are located in relatively close proximity to one another, in the vicinity of former UST Nos. 10 and 11, in Area 5. Borings CM-53, -54, and -55 were performed to delineate the impacts initially detected at CM-40. Boring logs for these locations each indicate the shallow material was primarily mulch and red brick. A remedial excavation was conducted in this area in 1995; therefore, shallow materials in the area are fill. At locations CM-53 and CM-54, samples from the 2 to 4 foot depth were also analyzed and contained barium, cadmium, and lead well

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

below the standards. The impacts therefore appear to be limited to the upper two feet of material and are possibly associated with mulch or brick.

Lead was present at 550 mg/kg at CM-39 (0-2') within the footprint of the Machine Shop, Building 8, in Area 4. The RCS-1 Reportable Concentration for lead in soil is 300 mg/kg. Other metals analyzed in this sample were below RCs.

Cadmium was detected above the RCS-1 at location CM-53 (1-3'), in the southern portion of Area 4.

Chromium was detected above the 30 mg/kg RCS-1 standard in two samples, with the highest concentration (550 mg/kg) reported at CM-46 (1-3 feet). The 30 mg/kg standard applies to the hexavalent form of chromium, which is typically not found naturally. A 1,000 mg/kg RCS-1 standard applies when it can be demonstrated the chromium present is not in the hexavalent form. Sample CM-46 (1-3') was therefore analyzed for hexavalent chromium. As indicated in Table 5, the hexavalent chromium concentration in that sample was 1.7 mg/kg. Four other soil samples were also analyzed for hexavalent chromium, with similar low to nondetect results. As such, we conclude that the chromium concentrations in Site soil are below reportable concentrations for trivalent and hexavalent forms.

Metals were not detected above the RCS-1 in the seven test pit soil samples.

Polychlorinated Biphenyls

PCBs were not detected in the 22 soil samples analyzed for these potential contaminants.

5.5 GROUNDWATER ANALYSES

In October and November 2009, OTO collected groundwater samples from 19 monitoring wells on the Site. Fourteen of the wells were recently installed by OTO; five previously existed, including MW-35. Four of the prior wells could not be identified at the time of sample collection and were therefore labeled "Existing-1" through "Existing-4" for tracking purposes. The four unidentified wells were subsequently identified as WjF's recently installed wells MW-204, MW-205, MW-201, and MW-202, respectively. The locations of these wells are shown on Figure 2.

The samples were collected using low flow groundwater sampling techniques, which included monitoring of groundwater elevation, pH, specific conductance, temperature, dissolved oxygen (DO), and oxidation-reduction potential (ORP) while groundwater was removed with a surface peristaltic pump. Field screening measurements are summarized on Table 7 and were typical of groundwater in industrial areas. Dissolved oxygen levels were low, which may indicate microbiological activity associated with degradation of petroleum constituents in the subsurface. The water withdrawal was maintained at a rate low enough

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

that significant drawdown was not observed in the wells. After the monitored parameters had stabilized, samples were collected into pre-preserved sampling bottles. Groundwater sampling logs documenting the field measurements, sample bottles, and preservatives used are provided in Appendix G.

The groundwater samples were submitted to Con-Test Analytical Laboratory where they were analyzed for volatile and extractable petroleum hydrocarbons (VPH/EPH), volatile organic compounds (VOCs) by EPA Method 8260, and RCRA 8 metals. Groundwater analytical data are summarized in Table 8; laboratory reports are attached in Appendix G.

5.5.1 Petroleum Hydrocarbons and VOCs

As shown on Table 8, EPH constituents were detected above the applicable RCGW-2 Reportable Concentrations at two locations, CM-38 and CM-43. These two wells are both located in the western central portion of the Site, in Area 4. Well CM-38 is located immediately downgradient of former USTs 6 and 7, which were removed in 1987. A slight sheen was observed on that groundwater sample at the time of collection. EPH constituents were not detected at significant concentrations in wells CM-37 (adjacent to former USTs 1-4) or CM-41 and CM-53 (located near former USTs 10 and 11). VPH constituents, which are typically indicative of gasoline or fresh fuel oil releases, were not detected at concentrations of regulatory significance in Site groundwater. The VOCs detected in Site groundwater were not present at significant levels and were primarily compounds associated with petroleum products.

5.5.2 Metals

Metals were detected at levels exceeding RCGW-2 reportable groundwater concentrations at five monitoring well locations. Lead was present at or above the RCGW-2 (0.01 mg/l) at four locations, CM-38 (0.01 mg/l), CM-43 (0.025 mg/l), CM-45 (0.016 mg/l), and CM-53 (0.01 mg/l). Cadmium was identified in well Existing-2 at 0.008 mg/l, exceeding the RCGW-2 of 0.004 mg/l. Metals concentrations in groundwater are sometimes false positives associated with suspended soil/sediment particles. Optimally, low flow sampling results in clear samples collected with nominal disturbance of the surrounding medium; therefore, they are not filtered following collection. The groundwater sampling records (Appendix G) indicate the samples from CM-38, CM-43, CM-45, and CM-53 were cloudy, while the Existing-2 sample was clear.

In our opinion, the metals concentrations in groundwater are not associated with a condition likely to require remedial actions. The concentrations are relatively low. Resampling with field filtration may support a finding that the metals were associated with suspended sediments, rather than a release condition. Groundwater is not used for drinking purposes in this area. The only potential exposure location identified for groundwater is in the nearest surface water body, when groundwater discharges to surface water. At this Site, the nearest

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

surface water body is the Chicopee River, located 1,400 feet to the north. In our opinion, migration and discharge of impacted Site groundwater to surface water at significant concentrations is not likely.

5.6 SUMMARY OF REPORTABLE CONCENTRATION EXCEEDENCES

The applicable reporting categories for the Site are RCS-1 for soil and RCGW-2 for groundwater. Exceedences of Reportable Concentrations were detected at 13 locations across the Site. The following table provides a summary of these conditions.

Potentially Reportable Detections by Location

Reportable Condition No.	Sample Location	Constituents >RCS-1 in Soil	Constituents >RCGW-2 in Groundwater
RC-1	BT-E, DP-1	petroleum	N/A
RC-2	CM-22	petroleum	none
RC-3	CM-38	petroleum	petroleum, lead
RC-4	CM-39	lead	None
RC-5	CM-40, CM-53, CM-54	barium, cadmium, lead	N/A
RC-6	CM-43	petroleum	petroleum, lead
RG-7	CM-45	none	lead
RC-8	CM-52	cadmium	
RC-9	DP-2	polycyclic aromatic hydrocarbons	N/A
RC-10	MW-205	none	cadmium
RC-11	OTP-4	polycyclic aromatic hydrocarbons	N/A
RC-12	OTP-6	polycyclic aromatic hydrocarbons	N/A
RC-13	OTP-8	polycyclic aromatic hydrocarbons	N/A

In addition to these reportable conditions, the present Site owner (Goodwin Realty LLC) is addressing two reportable conditions at other locations (as are discussed in Section 4.7). These release locations are located around test pit TP-3 in Area 4 and around test pit TP-16 in Area 1.

Of the 13 potentially reportable conditions identified by OTO and summarized above, four involve petroleum products in soil/groundwater, three involve heavy metals in soil, three involve heavy metals in groundwater, and four involve polycyclic aromatic hydrocarbons in soil.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

Six of the seven conditions associated with petroleum and heavy metals (presented above) in soil appear to be reportable under the Massachusetts Contingency Plan (MCP). RC-3 is located downgradient of former tanks Nos. 6 and 7, which were removed in 1987 and addressed by the Crane Company as part of facility closure. The detection of petroleum in well CM-38 could therefore be construed to be covered by the Waiver Completion Statement prepared by ATC on behalf of Crane. If this were the case, no further response actions would be required for RC-3. However, the MassDEP may not agree with this interpretation, since ATC did not generate groundwater quality data in this area of the Site. Since the detection in groundwater at location RC-3 was above the MCP GW-2 standard, we recommend additional work be performed to demonstrate the concentrations detected would not result in a significant risk to future building occupants (a condition that was not considered in the existing waiver completion submittal).

As was discussed above, the elevated detections in heavy metals in groundwater (RC-3, RC-6, and RC-9) may not constitute a reportable condition, since these metal detections may be attributable to sediment in the water samples. The collection of additional samples from these wells is recommended, with analyses for total and dissolved metals.

Polycyclic Aromatic Hydrocarbons were detected above reportable conditions at four locations (RC-9, RC-11, RC-12, and RC-13). These detections may be attributable to the presence of coal ash in the soil. If this is the case, these detections may be subject to reporting exemptions contained in the MCP. The analysis of soil samples from these locations for coal and coal ash content is recommended.

The locations of these conditions are shown on Figure 4.

6.0 SUMMARY AND CONCLUSIONS

Environmental Site Assessment activities were conducted for the approximately 15.9 acre parcel of land in Indian Orchard owned by Goodwin Realty LLC and formerly occupied by the Crane Company/Chapman Valve facility. The assessment consisted of: a review of Site history and past investigations at the Site; a review of regulatory agency files; conversations with the Site owner and local officials; the collection and analysis of soil and groundwater samples; and preparation of this report. A summary of our findings and conclusions is presented below.

6.1 SITE USE HISTORY

The Site was formerly occupied by the Chapman Valve/Crane Company factory, which operated at the Site from approximately 1874 to 1986. The factory included approximately twelve buildings which were used as machine shops, iron, brass and steel foundries, and associated maintenance, power house, and office areas. An underground utility trench housing steam lines was located between Buildings 25 and 48. Most of the Site buildings

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

were demolished in 2000. The Site has been vacant since that time and is currently owned by Goodwin Realty LLC.

During its operation, the foundry was fueled by coal and coke. Significant quantities of oil and other hazardous materials were used in Site operations. At least 19 underground storage tanks, most containing petroleum, were previously located on Site and were removed in 1987. Past employees of the Crane Company alleged improper disposal of wastes occurred on Site, including petroleum releases to the ground surface and releases from leaking equipment during factory operations.

6.2 PRIOR SITE INVESTIGATIONS AND REMEDIATION

Multiple environmental conditions have been identified at the Site since the 1980s and have been assessed under Release Tracking Number (RTN) 1-00170.

Releases identified at the Site included petroleum in shallow soils along the eastern side of the property and petroleum in subsurface soils in the vicinity of former underground storage tanks Nos. 1-4, 6-7, and 10-11. Response actions conducted at the Site have included:

- the removal and off-site disposal of PCB oils from transformers and other electrical equipment;
- the excavation and off-site disposal of a cumulative total of over 2,400 cubic yards of petroleum impacted soil from eight locations on Site; and
- the collection and analysis of soil and groundwater samples from across the Site.

The excavation in the UST Nos. 1-4 Area was limited by the presence of building foundations and the underground utility tunnel. Impacted soil is known to remain below structures in that area. ATC estimated approximately 50 cubic yards of impacted soil remained beyond the limits of that excavation.

The Site is a transition site under the MCP, as it was listed with MassDEP prior to the creation of the current regulatory framework. A Completion Statement was filed for the Site in May 1998. While the Completion Statement would typically be the final document needed to "close" a site under the MCP, at this Site, additional release conditions were identified following submittal of that document. At MassDEP's direction, supplemental investigations were performed under the existing RTN. Correspondence in MassDEP files indicates they anticipate submittal of a Response Action Outcome (RAO) report to satisfy MCP requirements for the Site.

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

6.3 OTO INVESTIGATIONS

OTO investigations included a review of Site history and prior investigations, collection and analysis of soil samples from borings and test pits, installation of groundwater monitoring wells, and collection and analysis of groundwater samples. Samples were analyzed for petroleum constituents, PCBs, volatile and semi-volatile organic compounds, and metals. This report does not address asbestos which may remain in Site media and is the subject of a separate report.

For the purposes of evaluating the regulatory significance of concentrations in Site soil and groundwater, we have compared results to MCP Reportable Concentrations (RCS-1 for soil, RCGW-2 for groundwater). The property is already listed with MassDEP due to previously reported releases; therefore, concentrations detected above MCP Reportable Concentrations (RCs) are not necessarily reportable if they are consistent in nature and location with previously identified conditions.

PCBs, VOCs, and non-petroleum SVOCs were not detected in Site soil or groundwater at concentrations which exceed MCP Reportable Concentrations. Constituents which were detected at level above Reportable Concentrations are discussed below for soil and groundwater.

6.3.1 Soil Conditions

Petroleum constituents including aliphatic and aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were detected in soil and groundwater samples, particularly in the vicinity of monitoring wells CM-38 and CM-43. Well MC-38 is downgradient of the UST Nos. 6-7 area in which soil excavation was conducted due to petroleum impacts, and indicates residual petroleum is present in that area. The results at this location could reasonably be considered consistent with conditions identified in Crane's Waiver Completion Statement, and therefore do not required further response actions.

The debris piles (samples DPDP-1 and DP-2) contained PAHs at levels exceeding RCs. These levels are moderate and would likely be considered consistent with a condition of No Significant Risk using a Method 3 Risk Characterization. The PAHs may also be exempt from reporting if coal ash is identified at these locations.

Petroleum constituents were identified in two areas not previously identified as impacted. Location CM-22, performed through the Building 25 slab in Area 6, contained petroleum fractions slightly above the RCS-1 standard. The concentrations present would be consistent with a condition of No Significant Risk under a Method 3 Risk Characterization. However, additional delineation should be conducted in this area to determine the extent of the condition.

[ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

The highest petroleum concentrations detected in soil during our investigations were at BT-E, near an abandoned box truck in Area 6. The truck contained miscellaneous building supplies, an empty drum, and a drum partially filled with liquid. The EPH concentrations at that location are approximately ten times the RCS-1 and half of the MCP Upper Concentration Limits. The release was shallow (immediately below the slab) and was not detected at nearby sample locations BT-B and BT-W. This is therefore likely a localized condition, possibly from release of drum contents, rather than more widespread historic releases from machinery in the building. Additional delineation and possibly a limited excavation should be conducted at this location.

6.3.2 Groundwater Conditions

Site groundwater contained petroleum constituents above RCGW-2s at locations CM-38 and CM-43, where soil impacts were also identified. Cadmium exceeded the RCGW-2 at one location (MW-205), and lead was exceeded at four locations (CM-38, CM-43, CM-45 and CM-53). The wells with lead exceedences are not proximate to one another, but are at widespread locations across the Site. We recommend resampling and analysis of groundwater from these locations, which may indicate the metals detections are the result of suspended solids rather than dissolved contaminants. If the metals detections are confirmed, they could likely be addressed under a Method 2 or Method 3 Risk Characterization. Groundwater at this location is not a current or potential drinking water source; therefore, the only potential exposure route that would be evaluated for metals in groundwater is aquatic environmental receptor contact following discharge to a surface water body. The nearest surface water body is approximately 1,400 feet away; therefore, this exposure route is not a concern.

One constituent, C9-C18 aliphatics, was detected in groundwater at a concentration that exceeds the MCP Method 1 GW-2 standard at one location, CM-43, in Area 4. Those standards are developed to be protective of indoor receptors who may be exposed when volatile constituents migrate from the subsurface into overlying structures. There are currently no buildings on Site; therefore, this is not a completed exposure pathway at the present time. However, if the property is redeveloped as planned, evaluation of the potential for subsurface vapors to migrate into a new building should be conducted. Based on the presence of petroleum in soil at this location, a limited excavation may serve the dual purposes of remediating soil and groundwater.

6.4 IMPACTS OF RELEASES ON FUTURE DEVELOPMENT

Regardless of the possible submittal of an RAO for the Site, petroleum impacted soils remain at the Site. Even if an RAO is achieved, if future redevelopment and/or construction activities occur within the boundaries of the Disposal Site and involve excavation and relocation of petroleum-impacted soils, proper soil management will be

ASSOCIATES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

required pursuant to 310 CMR 40.0032 of the MCP. MassDEP regulations place specific requirements and restrictions on the excavation and relocation of petroleum-impacted soil. Re-use on site may be conducted, but soils may not be moved to a location where they would degrade conditions. Management may include soil testing, on-site reuse, and/or off-site disposal at an appropriate facility. When and if redevelopment within the Disposal Site limits is considered, we recommend you consult with a Licensed Site Professional to evaluate soil management options.

6.5 ESTIMATED COST OF FUTURE RESPONSE ACTIONS

As is summarized above, it is our opinion that additional response actions are required at 13 locations. In addition, additional response actions are required at two locations where releases were previously identified but a Response Action Outcome has not yet been achieved by the property owner. Some of the 13 locations identified by OTO may not be ultimately reportable and subject to the MCP, dependent on the results of additional analyses proposed below. Future response actions would likely include:

- The collection and analysis of additional soil and groundwater samples to evaluate the lateral extent of contaminants;
- The collection and analysis of groundwater samples for total and dissolved metals from three locations to confirm previous detections above reportable concentrations;
- The collection and analysis of samples from four locations for coal and coal ash content;
- Reporting of the confirmed releases to the MassDEP;
- The excavation and off site disposal of petroleum and metal impacted soils from four locations. It is estimated that a total of 300 cubic yards will be excavated;
- The completion of a Method 3 Risk Characterization; and
- Completion of a Response Action Outcome Report.

We anticipate that a single risk characterization and Response Action Outcome report will be required for the Site. Anticipated response costs to achieve compliance on the remaining release conditions are as follows: [A S S O C I A T E S [

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

Area	Proposed Response Actions	Estimated Cost
RC-1	Delineate extent of soil impact, localized soil excavation	\$20,000
	(assume 100 cy), Method 3 risk assessment, RAO	
RC-2	Delineate extent of soil impact, Method 3 risk assessment,	\$15,000
	RAO	
RC-3	Consider petroleum in groundwater consistent with waiver	\$5,000
	completion; resample groundwater for total and dissolved	
	lead; assume that condition will not be reportable,	
	document with MassDEP	
RC-4	Delineate extent of soil impact, localized soil excavation	\$20,000
	(assume 100 cy), Method 3 risk assessment, RAO	
RC-5	Delineate extent of soil impact, localized soil excavation	\$15,000
	(assume 50 cy), Method 3 risk assessment, RAO	
RC-6	Resample groundwater for total and dissolved metals;	\$1,500
	assume that condition will not be reportable	
RC-7	Resample groundwater for total and dissolved metals;	\$1,500
	assume that condition will not be reportable	
RC-8	Delineate extent of soil impact, localized soil excavation	\$15,000
	(assume 50 cy), Method 3 risk assessment, RAO	
RC-9	Perform microscopic analysis on soil; assume that	\$1,000
	condition will not be reportable due to coal/ash	•
RC-10	Resample groundwater for total and dissolved metals;	\$1,000
	assume that condition will not be reportable	
RC-11	Perform microscopic analysis on soil; assume that	\$1,000
	condition will not be reportable due to coal/ash	
RC-12	Perform microscopic analysis on soil; assume that	\$1,000
	condition will not be reportable due to coal/ash	
RC-13	Perform microscopic analysis on soil; assume that	\$1,000
	condition will not be reportable due to coal/ash	
WJF	Method 3 Risk Assessment and RAO Report	\$7,000
	TOTAL:	\$105,000

We assume that the work conducted by WjF will adequately delineate the previously-identified conditions which Goodwin Realty LLC has responded to, but that final completion of work in those areas will include risk characterization by OTO.

Please note these estimates are preliminary and actual costs may very, based upon the result of the additional delineation activities proposed. Until the risk characterization is complete, we cannot determine whether an Activity and Use Limitation will be required to achieve a condition of No Significant Risk. It is possible that an AUL will be required in one or more

[ASSOCIAT ES]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

sub-areas of the Site. The condition most likely to require an AUL is metals in soil, which pose a risk to residential receptors, particularly through the produce ingestion pathway. The limitations that would likely be required in such an AUL would include no residential or agricultural use of the property.

7.0 LIMITATIONS

Our Environmental Site Assessment activities were performed in accordance with generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographic area. Our findings and conclusions must not be considered as scientific certainties, but rather as our professional opinion, concerning the potential significance of the limited data obtained during the course of our study. We do not and cannot represent that the Site contains no hazardous material or oil, or that the Site is free from latent conditions not observed in our assessment. Our report is subject to the additional Limitations contained in Appendix A.

This assessment and report was prepared on behalf of and for the exclusive use of the Springfield Redevelopment Authority for the purpose of rendering an opinion as to the presence of oil or hazardous materials in Site soil and groundwater subject to requirements of M.G.L. Chapter 21E and 310 CMR 40.0000. This report shall not, in whole or in part, be disseminated or conveyed to any other party. No other party may rely upon this report (or any part there of) without the prior written consent of O'Reilly, Talbot & Okun Associates, Inc.

8.0 REFERENCES

ATC Associates, Inc. (ATC) 1998. Phase II Comprehensive Site Assessment Addendum, Volume I and Volume II- Risk Assessment Report, Crane Co. Manufacturing Facility, Springfield, Massachusetts, DEP Waiver Site No. 1-0170. May 20, 1998.

ATC Associates, Inc. (ATC) 2003a. Audit Memorandum: Section VI. Comments – Utility Tunnel; Crane Co., Pineuale, Gooduin and Moxon Streets, Springfield, Massachusetts, RTN 1-0170, NON-WE-03-3A070. August 27, 2003.

ATC Associates, Inc. (ATC) 2003b. Post-Audit Completion Statement and Addendum Risk Characterization; Crane Co., Pinetale, Goodwin and Mox on Streets, Springfield, Massachusetts, RTN 1-0170, NON-WE-03-3A070. October 17, 2003.

Con-Test, Inc. (Con-Test) 1991. Phase II Comprehensive Site Assessment Conducted at Crane Co. Indian Ordrard Facility, Pineule, Goodwin and Moxon Streets, Indian Ordrard, Springfield, Massachusetts, for Crane Co., DEP Site #. 1-0170. January 1991.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

Department of Energy (DOE) 2003. Certification Docket for the Remedial Action Performed at the Chapman Value Site, Indian Orchard, Massachusetts. August 2003.

Environmental Insight (EI) 2009. Letter Re: Crane Company, Pineule, Goodwin and Moxon Streets, Springfield, MA, RTN 1-0170. June 24, 2009.

ERT (ERT) 1986. Phase I, Environmental Review, Indian Ordrand Facility, Massachusetts. October 1986.

ERT (ERT) 1987. Remedial Investigations for Indian Ordrard Facility, Springfield, MA. October 27, 1987.

Massachusetts Department of Environmental Protection (MassDEP). 2002a. Characterizing Risks Posed by Petroleum Contaminated Sites: Implementation of the MADEP VPH/EPH Approach; Final Policy # WSC-02-411. October 31, 2002.

Massachusetts Department of Environmental Protection (MassDEP). 1988. Letter entitled Review of Report, Springfield – SA 1-170-87338, Crane Company, M.G.L. ch. 21E. January 22, 1988.

Massachusetts Department of Environmental Protection (MassDEP). 2002b. *Technical Update: Background Levels of Polycyclic A romatic Hydrocarbons and Metals in Soil.* May 23, 2002.

Massachusetts Department of Environmental Protection (MassDEP). 2003. Notice of Audit Findings/Notice of Noncompliance, Springfield, RTN 1-00170, Crane Company, Pinerale, Goodwin & Moxon Sts., Phase II & Wairer Completion, NON-WE-03-3A070. July 1, 2003.

Massachusetts Department of Environmental Protection (MassDEP). 2009. Memorandum Proposed Approach for Risk Characterization Addendum, Crane Company/Chapman Value Site, RTN 1-0170. August 11, 2009.

O'Reilly, Talbot & Okun Associates, Inc. (OTO). 2006. Preliminary Environmental Finding, Former Chapman Value Factory and Landfill Sites, Springfield, Massachusetts. August 28, 2006.

Tetra Tech NUS, Inc. (NUS). 2000. Final Site Inspection Report for Crane Company (Former), Springfield, Massachusetts, CERCLIS No. MAD985279421, prepared for USEPA Region I. February 28, 2000.

WjF Geoconsultants, Inc. (WjF). 2006. Release Notification, Former Chapman Valve/Crane Company, Springfield, Massachusetts, WJF Project No. 1675. November 29, 2006.

WjF Geoconsultants, Inc. (WjF). 2007a. Release A batement Measure (RAM) Status Report, Former Chapman Value/Crane Company, Springfield, Massachusetts, WJF Project No. 1675. May 10, 2007.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

WjF Geoconsultants, Inc. (WjF). 2007b. Release Abatement Measure (RAM) Status Report, Former Chapman Value/Crane Company, Springfield, Massachusetts, WJF Project No. 1675. November 12, 2007.

WjF Geoconsultants, Inc. (WjF). 2008. Release A batement Measure (RAM) Status Report, Former Chapman V alw/Crane Company, Springfield, Massachusetts, WJF Project No. 1675. May 12, 2008.

WjF Geoconsultants, Inc. (WjF). 2009. Release A baterrent Measure (RAM) Completion Report, Former Crane Company, Springfield, Massachusetts, MADEP RTN 1-00170. February 20, 2009.

[A S S O C I A T E S]

Environmental Site Assessment Report Indian Orchard Business Park Pinevale Street Springfield, Massachusetts

9.0 LIST OF ACRONYMS

AST Above ground Storage Tank
AUL Activity and Use Limitation
BMP Best Management Practices

CMR Code of Massachusetts Regulations

CERCLA Comprehensive Environmental Response, Compensation, and Liability ACT CERCLIS Comprehensive Environmental Response, Compensation, and Liability ACT

Information System

EPA U.S. Environmental Protection Agency EPH Extractable petroleum hydrocarbons ESA Environmental Site Assessment

FUSRAP Formerly Utilized Sites Remedial Action Plan

LSP Licensed Site Professional

MassDEP Massachusetts Department of Environmental Protection

MassGIS Massachusetts Geographic Information System

MCP Massachusetts Contingency Plan MGL Massachusetts General Laws MGP Manufactured gas plant

NGVD National Geodetic Vertical Datum

NHESP Natural Heritage & Endangered Species Program

NOI Notice of Intent NPL National Priority List

OHM Oil and/or Hazardous Materials

OTO O'Reilly, Talbot & Okun Associates, Inc.

PAHs Polycyclic aromatic hydrocarbons

PCBs Polychlorinated biphenyls
RAO Response Action Outcome
RC Reportable Concentration

RCRA Resource Conservation and Recovery Act

RTN Release Tracking Number
SVOC Semivolatile Organic Compound
TPH Total Petroleum Hydrocarbons
UST Underground Storage Tank
VOC Volatile Organic Compound
VSQG Very Small Quantity Generator
WPA Wetlands Protection Act

Table 1 Underground Storage Tank (UST) Summary Former Chapman Valve Site Pinevale Street, Springfield

UST No.	Location	Capacity	Inches of Product	Contents
11	Old Power House	25,000 gallon	47	No. 4 oil
2	Old Power House	25,000 gallon	91	
3	Old Power House	25,000 gallon	13	No. 4 oil
4	Old Power House	25,000 gallon	65	No. 6 oil
5	Pattern Storage	100 gallon	*	Water/sludge
6	Brass Foundry #1	3,000 gallon	Unknown	Alcohol
7	Brass Foundry #2	3,000 gallon	46	No. 2 oil
8	Essex and Pinevale Lot		76	No. 2 oil
-9	Dept. 40	650 gallon	8	Gasoline
10	New Power House #1	8,000 gallon	Unknown	No. 2 oil
11	New Power House #2	20,000 gallon	13	No. 4 oil
12	Dept. #7 Hill #1	20,000 gallon	11	Water/sludge
13	Dept. #7 Hill #2	20,000 gallon	94	No. 2 oil
14		20,000 gallon	6	Water/oil
15	Dept. #7 Hill #3	20,000 gallon	6	Water/oil
16	Dept. #7 Hill #4	20,000 gallon	60	No. 6 Water/sludge
17	Dept. #7 Hill #5	20,000 gallon	6	No. 6 Sludge
18	Dept. #7 Hill #6	20,000 gallon	6	No. 6 Sludge
	Dept. #7 Ship.	3,000 gallon	0	0
19	Dept. 40	8,000 gallon	Unknown	No. 2 oil

NOTES:

1. These 19 USTs were removed in 1987. Product contents and thickness measured prior to removal.

F.U0001176 City of Springfield022 Fmr Chapman Valve-Indian Orchard Business ParkDA Subsurtace Investigations/Data Tables/Soll data 2008 Pinevale St

Soil Analytical Results: Test Pits, 2006 Extractable and Volatile Petroleum Hydrocarbons (EPH/VPH) & PCBs Concentrations in mg/kg Factory Parcel / Pinevale Street Table 2

Former Chapman Valve/Crane Company

Sample Location:	TP-3	TP-7	6-dJ.	TP:14	JF-16	TP-18	MADEP	RCS-1	
Depth (feet.):	0.6-1	1-2	1-2	1-2	2.4	10.12	Ash Fill	Standard	UCLS
Date Collected:	06/26/2006	06/26/2006	06/26/2006	07/26/2006	07/26/06	06/26/2006	Background		
PID Reading:	0.0	0.0	0.0	0.0	0.0	123.0	NA	N.A.	NA
Volatile Petroleum Hydrocarbons									
C5-C8 Aliphatics		1	1	4	1	26.2	NA	100	5,000
C9-C12 Aliphatics		A	1		-	193	NA	1,000	20,000
C9-C10 Aromatics	(mpp)	Seen	and.		1	277	NA	100	5,000
VPH Target Analytes									
Benzene	t	t	ï		I	<0.067	NA	30	00006
Ethylbenzene	1	1	1	1	ł	99'0	VA	500	10,000
Methyl tert-butyl ether	ı	ŧ	1		1	<0.067	NA	100	5,000
Naphthalene	3	-		1	į	5,84	N.A.	200	10,000
Toluene	Sec.	open.	-	Ģ	£.	<0.067	VV	200	10,000
Xylenes (total)	1	-			-	080	VN	300	10,000
Extractable Petroleum Hydrocarbons									
C9-C18 Aliphatics	<303	j	<33.6			1,520	NA	1,000	20,000
C19-C36 Aliphatics	9,320	-	<33.6			877	VZ	2,500	20,000
C11-C22 Aromatics	1,790	,	<33.6			792	VN	800	10,000
EPH Target Analytes									
Naphthalene	13.3		<0.2			3.4	1	900	10,000
2-Methylnaphthalene	8.3	+	<0.2		j	4.5	1	500	10,000
Acenaphthylene	54.7	7	<0.2			3.3	1	100	10,000
Acenaphthene	19.2	+	<0.2			5.3	(1)	1,000	10,000
Fluorene	23.9)	<0.2			9	cı	1,000	10,000
Phenanthrene	919		<0.2			2	20	100	10,000
Anthracene	154		0.2			0.4	4	1,000	10,000
Fluoranthene	459	+	0.3			8'0	10	1,000	10,000
Pyrene	429	1444	0.3			0.4	30	1,000	10,000
Benzo(a)anthracene	184		0.3			0.1	6	7.	3,000
Chrysene	145		0.7			<0.2	L	7	400
Benzo(b)fluoranthene	104	-	2.1			<0.2	8	7	3,000
Benzo(k)fluoranthene	117	ŧ	<0.2			<0.2	4	20	10,000
Benzo(a)pyrene	115		0.3			<0.2	-	2	300
Indeno(1,2,3-cd)pyrene	11.7	Canal Control	8.0			<0.2	3	7	3,000
Dibenzo(a,h)anthracene	11.2	-	<0.2			<0.2	1	0.7	300
Benzo(g,h,j)perylene	56.1		0.7			<0.2	m	1,000	10,000
Polychlorinated biphenyls (PCBs; mg/kg)									
Arnelor 1954	206	-	-				42	c	1///

- Concentrations in mg/kg (parts per million) on a dry weight basis.
 ""indicates not detected; value is sample-specific quantitation limit.
 MCP Method 1 soil standards from 310 CMR 40.0975(6).
 "LOLS" = Upper Concentration Limits, from 310 CMR 40.0996(7): "NS" indicates no standard. "Technical Update: Background Levels nf.
 "PLD"=Photoionization detector soil headspace measurement in parts per million.
 Values shown in bold exceed Method 1 S-1/GW-3 standards.
 "-" indicates not analyzed for this parameter.

F:J0001\76 City of Springfield\22 Fmr Chapman Valve-Indian Orchard Business Park\04 Subsurface Investigations\Data Tables\Soil data 2006 Pinevale St

Table 3
Soil Analytical Results: Test Pits, 2006
Inorganic Analytes
Concentrations in mg/kg
Factory Parcel / Pinevale Street
Former Chapman Valve/Crane Company

Sample Location:	TP-3	TP-7	TP-9	TP-14	TP-16	MADEP	RCS-1	
Depth (feet):	0.6-1	1-2	1-2	1-2	2-4	Ash Fill		$ $ $ $ $ $ $ $
Date Collected:	06/26/2006	06/26/2006	06/26/2006	01/26/2006	04/26/06	Background	Standard	
Arsenic	6.19	19.0	3.13	<2.74	22.7	20	20	200
Barium	39.8	203	26.7	72.2	42.2	50	1,000	10,000
Cadmium	0.33	<0.31	0.73	<0.28	<0.31	3	2	300
Chromium (IV or total)*	19.1	8.09	26.5	24	16.2	40	30	2,000
Lead	80.7	163	30.5	21.9	1040	009	300	3,000
Mercury	0.027	0.089	<0.009	0.562	0.054	1	20	300
Selenium	<5.05	80.9>	<5.59	<5.47	<6.04	1	400	8,000
Silver	<0.51	<0.61	<0.56	<0.55	<0.61	2	100	2,000

NOTES:

- 1. Concentrations in milligrams per kilogram (mg/kg, or parts per million) on a dry weight basis.
 - 2. "<" indicates not detected; value is sample-specific quantitation limit.
 - 3. MCP Method 1 soil standards from 310 CMR 40.0975(6).
- 4. UCLs = Upper Concentration Limits, from 310 CMR 40.0996(7). "NS" indicates no standard.
 - 5. Background values from MADEP "Technical Update: Background Levels of Polycyclic

Aromatic Hydrocarbons and Metals in Soil", May 23, 2002.

* Per the 4/06 MCP, chromium is assumed to be hexavalent unless testing is done to prove otherwise.

Soil Analytical Results: Volatile and Extractable Petroleum Hydrocarbons (VPH/EPH) Former Chapman Valve Site Pinevale Street, Springfield Table 4

Sample No.:	CM-22	CM-23	CM-25	CM-38	CM-43	CM-45	MADEP	Reportable Method	Method 1	1 Standards
Depth (feet):	15-17	7-9	11-13	11-13	10-12	10-12	Ash Fill		8-1/	S-1/
Date Collected:	9/24/09	9/24/09	9/25/09	10/1/09	10/2/09	10/27/09	Background		GW-2	GW-3
PID Reading (ppmv):	92.1	2.4	118	120	131	0	NA	NA	NA	NA
Semivolatiles (Method 8270)		QN	1	1						
VPH Fractions										
C5-C8 Aliphatics	<16	 - -	<20	30	<23	-	NA	100	100	100
C9-C12 Aliphatics	140	ŀ	<13	58	37	ŀ	NA	1,000	1,000	1,000
C9-C10 Aromatics	270	-	<13	150	0/1	1	NA	100	100	100
VPH Target Compounds										
Benzene	<0.052	}	>0.066	<0.086	<0.078	ł	NA	2	30	30
Ethylbenzene	0.39	;	>0.066	0.28	0.094	1	NA	40	500	200
Methyl tert-butyl ether	<0.052	1	>0.066	>0.086		ŀ	NA	0.1	100	100
Naphthalene	2.2	ı	99:0>	2.8	1.1		NA	4	40	200
Toluene	<0.052	:	>0.066	>0.086	<0.078	1	AN	30	500	200
Xylenes (total)	0.54	1	<0.20	1.1	0.27		NA	300	300	500
EPH Fractions										
C9-C18 Aliphatics	1,200	1	18	026	2,400	<12	NA	1,000	1,000	1,000
C19-C36 Aliphatics	190	I	11	120	520	84	Ϋ́A	3,000	3,000	3,000
C11-C22 Aromatics	300	1	13	530	890	24	NA	1,000	1,000	1,000
EPH Target Compounds										
Acenaphthene	1.2	1	<0.11	1.5	0.28	0.13	2	4	1,000	1,000
Acenaphthylene	1.4	-	<0.11	3.9	0.62	<0.12	1	1	009	10
Anthracene	<0.11	ł	<0.11	<0.11	<0.11	0.25	4	1,000	1,000	1,000
Benzo(a)anthracene	<0.11		<0.11	<0.11	<0.11	89:0	6	7		7
Benzo(a)pyrene	<0.11		<0.11	<0.11	<0.11	0.58		7	2	2
Benzo(b)fluoranthene	<0.11	-	<0.11	<0.11	<0.11	0.89	8	L	7	7
Benzo(g,h,i)perylene	<0.11	-	<0.11	<0.11	<0.11	0.38	3	1,000	1,000	1,000
Benzo(k)fluoranthene	<0.11	1	<0.11	<0.11	<0.11	0.33	4	70	70	70
Chrysene	<0.11	1	<0.11	<0.11	<0.11	0.83	7	0/	70	70
Fluoranthene	0.4	1	<0.11	<0.11	0.4	1.6	10	1,000	1,000	1,000
Fluorene	1.8	-	<0.11	3.3	1.6	0.2	2	1,000	1,000	1,000
Indeno(1,2,3-cd)pyrene	<0.11	-	<0.11	<0.11	<0.11	0.41	3	7	7	7
2-Methylnaphthalene	4.1	1	<0.11	6.6	1.6	<0.12	1	2.0	80	300
Naphthalene	1.9	1	<0.11	1.9	0.42	<0.12	1	4	40	500
Phenanthrene	0.59	1	<0.11	1.7	<0.11	1.3	20	10	500	500
Pyrene	0.47		<0.11	<0.11	<0.11	1.5	20	1,000	1,000	1,000
The second secon							7			

NOTES:

- Concentrations in mg/kg (parts per million) on a dry weight basis.
 "<" indicates not detected; value is sample-specific quantitation limit.
 "RC-S" = Reportable concentration from 310 CMR 40.1600.
- 4. Background values from MassDEP "Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil", May 23, 2002.

 - "PID"=Photoionization detector soil headspace measurement in parts per million by volume.
 Values shown in bold exceed Method 1 standards.
 "--" indicates not analyzed for this parameter. "ND" indicates none of the target analytes for this analysis were detected.

Sample No.:	CM-15	CM-16	CM-17	CM-18	CM-19	CM-20	CM-21	CM-22	CM-23	CM-23A	23.A	CM-24	CM-25	CM-26	CM-27	CM-28	CM-29	MassDEP	MassDEP	Reportable
Depth (feet):	1-3	1.3	1-3	5-4	2-4	0-2	1-3	1-3	1-3	1-3	5.6	13	1.3	0-2	0-2	13	1.3	Natural Soil	Ash Fill	Conc.
Date Collected:	9/22/09	9/22/09	9/22/09	9/22/09	9/23/09	9/23/09	9/24/09	9/24/09	9/24/09	10/27/09	10/27/09	9/25/09	9/22/09	9/25/09	9/25/09	9/28/09	9/28/09	Background	Background	RCS-1
RCRA 8 Metals																				
Arsenic	2.6	3.3	2.9	3.2	3.9	4.1	2.8	<2.6	7.3	1	ī	4.6	3.5	3.2	3.9	<2,7	<26	20	20	20
Baritan	47	54	20	43	75	33	63	26	95	y	1	63	23	78	32	63	89	- 20	50	1,000
Cadmium	<0.26	<0.27	<0.26	<0.28	<0.27	<0.27	0.27	<0.26	86:0	1	ŧ	0.29	<0,27	0.38	<0.26	<0.27	0.3	2	3	2
Chromium VI	ì		,	1	1	2	r	1	à	2.0	<0.98	ŧ	1	1	ì	1		30	40	30
Chromium (IIII)*	12	11	11	8.8	-14	11	14	7.3	66	19	12	12	10	18	11	16	6.6	30	- 04	1,000
Lead	4.1	2.3	2.9	6.7	5.3	8.5	15	3.4	170		1	21	3.5	5.8	14	5.4	9.5	100	009	300
Mercury	<0.022	<0.022	<0.019	<0.019	<0.017	<0.018	<0.022	0.031	0.032	-	1	0.026	<0.023	<0.016	0.033	<0.014	<0.018	0.3	-	20
Selenium	<5.2	<5.3	<5.2	<5.6	<5.4	<5.4	<5.1	<5.2	<5.9	1		<53	<5.5	<5.3	<5.1	<5.3	<5.2	0.5	F	400
Silver	<0.52	<0.53	<0.52	<0.56	<0.54	<0.54	<0.51	<0.52	<0.59	,	1	<0.53	<0.55	<0.53	<0.51	<0.53	<0.52	9.0	ıń	100
PCBs (total)		-	,	<0.11	3	,	3	~0 th	<0.10>				1000		1010					6

NOTES

Coocentrations in miligrams per bilogram (mg/kg, or parts per million) on a dry weight basis.
 "A" indicates not detected, value is sample specific quantitation limit.
 "RCS-1" = Reportable concentration from 310 CMR 40 1600.
 "RCS-1" = Reportable concentration from 310 CMR 40 1600.
 "Backs and when the concentration from 320 Polytry and Sample of the part of the standard shown in bold exceed Method I standards.
 Values shown in bold exceed Method I standards.
 "NA" = Not applicable or one available. "NS" indicates no standard.
 " "A" = "indicates not analyzed for this parameter.
 Ret the 4/06 MCR, chromium is assumed to be becavalent unless testing is done to prove otherwise.

Table 5 (continued) Soil Analytical Results: RCRA 8 Metals and PCBs Former Chapman Valve Site Pinevale Street, Springfield

Sample 140.5	# CM-30	CM-31	CM-32	CM-33	CM-34	CM-35	CM-36	CM-37	CM-38	CM-39	CM-40	CM-40A	10A	CM-41	CM-42	CM-43	CM-44	MassDEP	MassDEP	Reportable
Depth (feet):	1-3	1.3	1.3	1-3	1.3	1-3	1-3	1-3	0.5-1	-0.2	0-2	0-2	2.4	1-3	13	153	0-2	Natural Soil	Ash Fill	Conc.
Date Collected:	E 9/28/09	9/28/09	9/39/09	60/62/6	60/62/6	9/29/09	60/06/6	9/30/09	10/1/00	10/1/01	10/1/00	10/28/09	10/28/09	10/2/09	10/2/01	10/2/00	10/2/09	Background	Background	RCS-1
RCRA 8 Metals																				
Arsenic	2.9	3.7	<2.8	3.2	4.5	9	5.3	3.1	5.9	8.5	6.4	1	-	<2.6	2.6	3.9	5.9	20	20	20
Barium	38	38	.53	35	110	25	45	48	62	390	1700	İ		35	33	120	120	20	50	1,000
Cadmium	<0.26	<0.27	<0.28	<0.27	<0.26	<0.25	0.31	<0.26	0.28	67	2.2	1	1	<0.26	<0.26	0.51	1.2	2	3	61
Chromium VI	al k		1	ł	7	1	į	1	1	1	1	<5.4	2.0			,	ī	30	40	30
Chromium (IIII)*	8.5	11	00	9.3	20	7.8	14	12	20	63	7.0	54	11	7	6.8	18	25	30	40	1,000
Lead	3.9	12	5.2	5.5	3.6	4.6	65	2.1	13	550	290	İ		3.6	5.5	37	110	100	009	300
Mercury	0.02	0.027	>0.016	<0.020	0.022	<0.020	<0.025	<0.022	0.027	0.26	0.36			<0.021	<0.016	0.038	0.29	0.3	1	20
Selenium	<5.2	<5.4	<5.5	<5.3	<53	<5.0	<5,5	<53	<5.3	<5.6	<6.1		1	<5.3	<5.1	<5.3	<5.7	0.5	1	400
Silver	<0.52	<0.54	<0.55	<0.53	<0.53	<0.50	<0.55	<0.53	<0.53	1.6	<0.61	1	,	<0.53	<0.51	<0.53	<0.57	9.0	100	100
PCBs (total)	745		<0.11	ı	<0.11	1	1	<0.11	<0.11	<0.11	1	j)	į	<0.10	1	<0.11	1	-	2

Concentrations in milligrams per kilogram (mg/kg, or parts per million) on a dry weight basis.
 "<" indicates not detected, value is sample specific quantitation limit.
 "RCS 1" = Reportable concentration from \$10 CMR 40.1600.

Background values from MassDEP "Technical Update Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil", May 23, 2002.
 Values shown in bold exceed Method 1 standards.

"NA" = Not applicable or not available. "NS" ipdicates no standard.
 "-" indicates not analyzed for this parameter.

8. Per the 4/06 MCP, chromium is assumed to be hexavalent unless testing is done to prove otherwise.

Table 5 (continued) Soil Analytical Results: RCRA 8 Metals and PCBs Former Chapman Valve Site Pinevale Street, Springfield

Depth (feet):	Cattible 1vo: Can-43	CIVI-10	40	CM-47	-47	CM-48	-48	CM-49	49	CM-50	CM-51	CM-52	CM-53	53	CM-54	25	Ö	CM-55	MassDEP	Reportable
	0-2	1-3	3-5	0-2	2-4	1-3	3-5	1-3	3.5	1-3	1-3	1-3	0-2	2-4	0-2	2.4	0-2	4-6	Natural Soil	Conc.
Date Collected: 1	0/21/00	10/27/09	10/27/09	10/27/01	10/27/09	10/27/09	10/27/09	10/27/09	10/27/09	10/28/09	10/28/09	10/28/09	10/28/09	10/28/00	10/28/09	10/28/09	10/28/09	10/28/09	Background	RCS-1
RCRA 8 Metals																				
Arsenic	10	1	,	,	1)	į		ł	4.4	4.9	9.5	1	1	1	1	,	+	20	-20
Barium	230	1	1	j	1	1	1	į	ij	33	33	98	2,400	290	3,300	280	460	120	- 20	1,000
Cadmium	1.7	1	1	ł	1	Ţ	-	k	1	<0.27	<0.28	3.3	2.4	0.64	4,4	0.61	1.4	1.3	2	61
Chromium VI	-	1.7	J.	1	7		÷	£,	1	1	1	ì			1990	3	1	,	30	30
Chromium (IIII)*	10	920	8,2	13	25	5.0	7.8	8.7	6.2	10	22	48	120	16	130	13.0	09	17.0	30	1,000
Lead	160	ı	Į	1)	1	1	1	1	3.8	36	260	400	54	300	110	280	100	100	300
Mercury	980.0	7	1	ł	ř)	į	1	I	<0.019	0.12	S	i	ī	1	1	1	1	0.3	30
Selenum	<6.1	1	-	1	Y	1	1	1	i	<5.4	<5.6	<5.8	1	i		1	1		0.5	400
Silver	<0.61		+	1	7		Ţ	1	į.	<0.54	>0.56	<0.58	i	ť	1	1	1		9.0	100
PCBs (total)	-	Ì	1	1	Y		1	(ı	<0,11	<0.11	<0.11	ŧ	1		1	1	1	ľ	2

NOTES:

Concentrations in milligrams per kilogram (mg/kg, or parts per million) on a dry weight basis.
 "<" indicates not detected value is sample-specific quantitation limit.
 "RGS-1" = Reporable concentration from 310 CMR 40.1600.

4. Background values from MassDEP "Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Menas in Soil", May 23, 2002.

5. Values shown in bold exceed Method 1 standards.

"NA" = Not applicable or not available. "NIS" indicates no standard.
 ""-" indicates not analyzed for this parameter.
 Per the 4/06 MCP, chromium is assumed to be becavalent unless testing is done to prove otherwise.

Table 5 (continued)
Soil Analytical Results: RCRA 8 Metals and PCBs
Former Chapman Valve/Crane Manufacturing Site
Pinevale Street, Springfield
Springfield, Massachusetts

Sample No.:	: OTP-4	OTP-4	9-dIO	OTP-8	DP-1	DP-2	DP-3	MassDEP	MassDEP	Reportable
Depth (feet):	6 0-2	3.4	0-3	-0-2	0-2	0.15	0-2	Natural Soil	Ash Fill	Conc.
Date Collected:	E 11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	Background	B	
RCRA 8 Metals										
Arsenic	4.6	5.7	5.7	3.8	3.7	6.4	3.5	20	20	30
Barium	62	94	- 081	240	170	110	35	50	50	1.000
Cadmium	0.29	<0.31	0.84	1.3	0.38	0.67	<0.27	2	3	2
Chromium VI	1	1	,	1	,	ï	-	30	40	30
Chromium (IIII)*	13	7.9	25	24	6.6	13	8.6	30	40	1,000
Cead	32	12	170	140	29	99	32	100	009	300
Mercury	1.2	0.043	990.0	0.26	0.073	0.18	0.025	0.3	1	20
sclenium	<5.3	<6.2	<5.4	9.6>	√5,4 <5,4	<5.6	<5.4	0.5	1	400
silver	0.78	<0.62	<0.54	<0.56	<0.54	<0.56	<0.54	9.0	5	100

- Concentrations in milligrams per kilogram (ring/kg, or parts per rinilion) on a dry weight basis.
 "<" indicates not detected, value is sample specific quantitation lumin.
 "RCS-1" = Reportable concentration from 310 CAR-40.1600.
 "BCS-1" = Reportable concentration from 310 CAR-40.1600.
 "Backs-1" = Reportable concentration from 310 CAR-40.1600.
 "Backs-1" = Reportable concentration from 310 CAR-40.1600.
 "Sables shown in boild exceed Method 1 standards.
 "NA" = Not applicable or not available. "NS" indicates no standard.
 " " " indicates not analyzed for this parameter.
 Per the 4/06 MCP, chromium is assumed to be hexavalent unless testing is done to prove otherwise.

Former Chapman Valve/Crane Manufacturing Site Soil Analytical Results: Test Pits, 2009 Pinevale Street Table 6

Springfield, Massachusetts

123,555,077				ngmide	opringheid, Massachuseus	cits		Ç	4	W Total	D
Sample No.:	OTP-4	OTP-4	OTP-6	OTP-8	DP-1	DP-2	DF-3	B1-E	DI-D	DI-W	reportable
Depth (feet):	0-2	3-4	0-3	0-2	0-2	0-1.5	0-2	44 (40 (00)		11 /10 /00	COEC.
Date Collected:	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/12/09	11/17/09	KC3-1
Volatile Organic Compounds											0.1
n-Butylbenzene			< 0.011		1			1.4	<0.0059	<0.0078	SZ
sec-Butylbenzene		}	<0.0022	-	1			0.49	<0.0012	<0.0016	SZ
4-Isomopyltoluene	****		<0.0022	-				1.2	<0.0012	<0.0016	100
1.2.4. Trimethylbenzene			<0.0022		1	.	******	1.8	<0.0012	<0.0016	1,000
1 3 5-Trimethylbenzene			<0.0022		1	1		1.1	<0.0012	<0.0016	10
Xvlenes (total)	417-4		<0.0066	1	1	!		1.19	<0.0036	<0.0047	300
VPH Fractions											
C5-C8 Airpharies		1		:		1	1	<200	1		100
C9-C12 Alinhatics	***	1		1	1	1	1	330	1	ŀ	1,000
CO C10 Aromatics				1			1	650	1	ł	100
VPH Target Compounds											
Bearing	,		-		1	1	-	<0.68	1	1	2
Peterlibonome			-	1		1	***	<0.68	1		40
Edypensene							1	890>		-	0.1
Metnyl tert-putyl effer	}	1	!	1				76			4
Naphthalene	1	1	ŀ	1	1	-	1	47			30
Tolucne	1	1	ŀ	-	1			<0.08	1	-	8
Xylenes (total)		1	;	1		-	1	4.8	-		200
EPH Fractions											
C9-C18 Aliohatics	<21	<25	\$5	>>	<22	<56	<11	6,800	1	:	1,000
C19-C36 Aliphatics	23	<25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	110	<22	58	<11	2,600	1		3,000
C11-C22 Aromatics	120	120	470	200	65	210	14	3,500	-		1,000
EPH Target Compounds											
Acenaphthene	0.49	<0.25	8.4	1.5	0.42	1.5	<0.11	7.4	:		4
Acenaphthylene	0.52	<0.25	<0.54	<0.56	<0.22	<0.56	<0.11	1.5	ł	-	
Anthracene	2.1	<0.25	19	2.8	0.8	3.3	0.13	5.8		1	1,000
Benzo(a)anthracene	7.2	<0.25	38	11	3.2	10	0.26	4.1	1		7
Benzo(a)pyrene	9.9	<0.25	32	10	3.2	9.2	0.24	3.6	ł	ļ	2
Benzo(b)fluoranthene	9.6	<0.25	46	16	4.6	15	0.34	5.5	1	***	7
Benzo(g.h.i)perylene	4.2	<0.25	21	7.4	2.3	9	0.14	2.6	1	:	1,000
Benzo(k)fluoranthene	3.3	<0.25	17	5.6	1.7	5.2	0.13	2	1	11	70
Chrysene	8.2	<0.25	41	13	3.7	12	0.3	4.9	-		70
Dibenzo(a,h)anthracene	1.2	<0.25	5.9	2	0.62	1.9	<0.11	0.71	;		0.7
Fluoranthene	16	<0.25	76	23	6.7	23	9.0	10	-		1,000
Fluorene	0.98	0.32	10	1.5	9.4	1.5	0.12	9.7	-		1,000
Indeno(1.2.3-cd)pyrene	4.6	<0.25	22	7.8	2.4	7.1	0.16	2.7	1	1	7
2-Methylnaphthalene	<0.21	<0.25	2.2	<0.56	<0.22	<0.56	<0.11	12		1	0.7
Naphthalene	<0.21	<0.25	8.9	0.84	<0.22	<0.56	<0.11	11	1	1	4
Phenanthrene	11	0.33	84	15	3.3	15	0.52	4.6	1	-	10
Pyrene	16	<0.25	68	22	6.8	22	0.59	17	}	1	1,000
PCBs (total)	<0.11	<0.12	<0.11	<0.11	<0.11	<0.11	<0.11	-		}	2
NOTES:							<u> </u>				

NOTES:

- 1. Concentrations in mg/kg (parts per million) on a dry weight basis.
- "<" indicates not detected, value is sample-specific quantitation limit.
 "RC-S" = Reportable concentration from 310 CMR 40.1600.
- Background values from MassDEP "Technical Update: Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil", May 23, 2002.
 "PID"=Photoionization detector soil headspace measurement in parts per million by volume.
 Values shown in bold exceed Method 1 standards.
 - 7. "--" indicates not analyzed for this parameter. "ND" indicates none of the target analytes for this analysis were detected.

F\076-22-04\GW data 2009, Pinevale field

Groundwater Field Screening Results Former Chapman Valve Site Pinevale Street, Springfield Table 7

Sample Date: (feet): units) (umho/cm) 10/5/09 9.7 6.15 392 10/6/09 14.0 6.85 677 10/6/09 13.4 7.18 663 10/5/09 10.8 6.87 409 10/5/09 11.1 6.60 368 10/5/09 11.1 6.08 593 10/6/09 10.6 6.88 593 10/5/09 9.7 6.45 582 10/5/09 11.9 7.23 326 11/3/09 8.3 6.97 455 11/3/09 9.8 6.77 543 11/3/09 9.8 6.77 543 11/3/09 9.1 6.73 528 11/3/09 9.1 6.73 528 10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.63 569 10/5/09 7.2 6.63			Depth to water	pH (standard	Specific Conductance		Dissolved Oxygen	
10/5/09 9.7 6.15 392 $10/6/09$ 14.0 6.85 677 $10/6/09$ 13.4 7.18 663 $10/5/09$ 10.8 6.87 409 $10/5/09$ 13.9 6.40 385 $10/5/09$ 11.1 6.60 3.68 $10/6/09$ 11.1 6.45 583 $10/6/09$ 11.9 7.23 326 $10/6/09$ 11.9 7.23 326 $11/3/09$ 8.3 6.97 455 $11/3/09$ 9.1 6.73 528 $11/3/09$ 9.1 6.73 528 $11/3/09$ 9.1 6.73 528 $11/3/09$ 9.1 6.73 528 $11/3/09$ 9.1 6.73 569 $10/5/09$ 7.2 6.63 577 $10/5/09$ 7.2 6.63 577 $10/5/09$ 7.1	Well No.	Sample Date:	(feet):	units)	(umho/cm)	Temp. (°C)	(mg/l)	ORP (mV)
10/6/09 14.0 6.85 677 $10/6/09$ 13.4 7.18 663 663 $10/5/09$ 10.8 6.87 409 663 $10/5/09$ 11.1 6.60 385 640 385 $10/6/09$ 11.1 6.60 6.88 593 6.93 $10/6/09$ 11.9 7.23 326 6.97 455 6.97 6.97 455 6.97 <th< th=""><th>CM-17</th><th>10/5/09</th><th>6.7</th><th>6.15</th><th>392</th><th>16.9</th><th>0.65</th><th>112.5</th></th<>	CM-17	10/5/09	6.7	6.15	392	16.9	0.65	112.5
10/6/09 13.4 7.18 663 $10/5/09$ 10.8 6.87 409 $10/5/09$ 13.9 6.40 385 $10/5/09$ 11.1 6.60 368 593 $10/6/09$ 10.6 6.88 593 8.25 $10/6/09$ 11.9 6.45 582 8.25 $10/6/09$ 11.9 6.72 6.97 455 $11/3/09$ 8.3 6.97 455 8.25 $11/3/09$ 9.1 6.77 543 9.2 $11/3/09$ 9.1 6.73 528 9.2 $11/3/09$ 9.1 6.73 528 9.2 $10/5/09$ 7.2 6.73 569 9.2 $10/5/09$ 7.2 6.63 569 9.2 $10/5/09$ 7.2 6.63 577 577 $10/5/09$ 7.1 6.65 577 577 $10/5/09$ 7.1 6.65 577 577 1	CM-22	10/6/09	14.0	6.85	<i>LL</i> 9	15.4	0.82	-71.2
10/5/09 10.8 6.87 409 $10/5/09$ 13.9 6.40 385 $10/5/09$ 11.1 6.60 368 $10/6/09$ 10.6 6.88 593 $10/6/09$ 10.6 6.88 593 $10/6/09$ 11.9 7.23 326 $10/5/09$ 8.3 6.97 455 $11/3/09$ 9.8 6.77 543 $11/3/09$ 9.1 6.73 528 $11/3/09$ 8.1 8.33 1.379 $10/5/09$ 7.2 6.73 363 $10/5/09$ 7.2 6.63 569 $10/5/09$ 7.1 6.63 569	CM-25	10/6/09	13.4	7.18	999	16.2	0.33	-123.0
10/5/09 13.9 6.40 385 10/5/09 11.1 6.60 368 10/6/09 10.6 6.88 593 10/6/09 11.9 6.45 582 10/6/09 11.9 7.23 326 10/5/09 8.3 6.97 455 11/3/09 9.8 6.77 543 11/3/09 9.1 6.78 715 11/3/09 9.1 6.73 528 11/3/09 7.2 6.73 363 10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	CM-34	10/5/09	10.8	6.87	409	17.2	0.92	•
10/5/09 11.1 6.60 368 593 10/6/09 10.6 6.88 593 83 6.45 582 82	CM-36	10/5/09	13.9	6.40	385	14.3	3.92	101.9
10/6/09 10.6 6.88 593 10/5/09 9.7 6.45 582 10/6/09 11.9 7.23 326 10/5/09 8.3 6.97 455 11/3/09 9.8 6.77 543 11/3/09 9.1 6.78 715 11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 569 10/5/09 7.1 6.63 569 10/5/09 7.1 6.65 577	CM-37	10/5/09	11.1	09:9	368	15.1	0.28	-
10/5/09 9.7 6.45 582 10/6/09 11.9 7.23 326 10/5/09 8.3 6.97 455 11/3/09 9.8 6.77 543 11/3/09 10.6 6.98 715 11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	CM-38	10/6/09	10.6	6.88	593	17.6	0.32	-100.5
10/6/09 11.9 7.23 326 10/5/09 8.3 6.97 455 11/3/09 9.8 6.77 543 11/3/09 10.6 6.98 715 11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.1 6.63 569 10/5/09 7.1 6.65 577	CM-39	10/5/09	2.6	6.45	582	16.4	0.97	99.0
10/5/09 8.3 6.97 455 11/3/09 9.8 6.77 543 11/3/09 10.6 6.98 715 11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.1 6.63 569 10/5/09 7.1 6.65 577	CM-41	10/6/09	11.9	7.23	326	16.5	8.28	93.3
11/3/09 9.8 6.77 543 11/3/09 10.6 6.98 715 11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.1 6.63 569 10/5/09 7.1 6.65 577	CM-42	10/5/09	8.3	6.97	455	14.9	2.45	1
11/3/09 10.6 6.98 715 11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	CM-43	11/3/09	8.6	6.77	543	15.5	0.59	53.7
11/3/09 9.1 6.73 528 11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	CM-45	11/3/09	10.6	6.98	715	14.0	0.59	-144.1
11/3/09 8.1 8.33 1,379 10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	CM-50	11/3/09	9.1	6.73	528	12.5	1.08	91.4
10/5/09 7.2 6.73 363 10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	CM-53	11/3/09	8.1	8.33	1,379	13.9	0.48	-169.4
10/5/09 7.2 6.63 569 10/5/09 7.1 6.65 577	MW-204	10/5/09	7.2	6.73	363	15.9	0.35	_
10/5/09 7.1 6.65 577	MW-205	10/5/09	7.2	6.63	695	16.1	0.36	-39.1
	MW-201	10/5/09	7.1	6.65	222	15.6	0.33	-69.6
10/6/09 7.3 6.79 850	MW-202	10/6/09	7.3	6.79	850	13.9	0.36	-107.0
MW-35 10/5/09 7.0 6.71 453 16.8	MW-35	10/5/09	7.0	6.71	453	16.8	0.49	-

NOTES:

- 1. Measurements made by OTO with portable equipment in the field.
 2. Depth to water measurements made from top of well casing, which is above grade in most instances, but below grade for others.

F\076-22.04\GW data 2009, Pinevale

Table 8
Groundwater Analytical Results
Former Chapman Valve Site
Pinevale Street, Springfield

Compounds	VPH Fractions	10 10 10 10 10 10 10 10	0.2 <0.20		09 11/3/09	10/2/00	10/2/00	10/2/01	10/9/01	10/5/09 R	10/5/09 RCGW-2 Standard	_		
Compounds C.010 O.054 O.050 C.010	Compounds	 < 0.10 < 0.10 < 0.10 < 0.150 < 0.150 < 0.150 < 0.002 < 0.002 < 0.002 											Standard	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Color	 < 0.10 < 0.150 < 0.150 < 0.002 < 0.002 < 0.002 	+	1	-	0.40	240	31.0	10.0	0.13			S	
Components Colin	Section Court Co	 < 0.0150 < 0.0150 < 0.002 < 0.002 < 0.002 < 0.002 	-	+	+	0.15	<0.10	<0.10	<0.10	0.16	1	-	20	
	County C	 < 0.01 < 0.150 < 0.150 < 0.002 < 0.002 < 0.002 		4.	7	7	A CONTRACTOR OF THE CONTRACTOR	CTOR	0.000	1	,		T	
Compounds	Compounds	 <0.150 <0.150 <0.150 <0.150 <0.002 <0.002 		H	-	<0.01	<0.01	<0.01	<0.01	<0.01	1		20	
Components Colid	Compounds	 <0.150 <0.150 <0.150 <0.002 <0.002 <0.002 	1	ł						T	1			
Components Colit	Compounds	 <0.150 0.1 <0.002 <0.002 <0.002 	L	L	-	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	10	5	50	
Compounds	Compounds	0.1 < 0.002 < 0.002 < 0.002	L	₽	-	< 0.15	< 0.15	< 0.15	< 0.15	<.0.15			50	
Compounds	Compounds Co.0002 Co.0003 Co.0002 Co	< 0.002 < 0.002 < 0.002	1	+	╀	0.34	0.17	0.18	0.24	0.41	+	+	ir	
c 0.0002 c 0.0002	\$\circ{0.0002}{c.0.002} \circ{0.0003}{c.0.002} \circ{0.0002}{c.0.002} \circ{0.0002}{c.0.0	< 0.002	1	1	1			2000		-	1		T	
Color Colo	\$\leq 0.002 0.007 0.011 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.	< 0.002	<0.002	\vdash	\vdash	< 0.002	< 0.002	< 0.002	< 0.002	0.0024	. 9	VA	. 9	
CMONG CADING C	Compounds	< 0.002	0.03	+-	+	0.005	< 0.002	< 0.002	< 0.002	0.008	1	+	0.04	
CAMING CAMING	Compounds		-	+	+	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	H	H		
CAUDY CAUD	Compounds	< 0.002	-	-	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.5	-	0.5	
CAUCHY C	\$\lequiv 0.002 \ \circ 0.002	< 0.002	-	-	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	-	-	0.4	
Council Compounds Council C	Compounds	< 0.002	-	-	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	à		0.07	
CALONZ C	Compounds	< 0.002	L	-	+	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		-	0.2	
CAMPRILL CAMPRILL	Compounds	< 0.002	-	-	-	0.005	< 0.002	< 0.002	< 0.002	0.004	-		0.04	
CALONG C	\$\langle 0.0002 0.048 \langle 0.0002 \langle 0.0002 0.0002 \langle 0.0102 0.0102 \langle 0.0102 0.0102 \langle 0.0102 0.0102 0.0102 0.0102 0.0002	< 0.002	L	+	_	0.003	< 0.002	< 0.002	< 0.002	< 0.002	H	-	20	
\$\langle \text{c} 0.0002 \quant \quant \text{c} 0.0002 \quant \text{c} 0.0002 \quant \quant \text{c} 0.0002 \quant \quant \text{c} 0.0002 \quant \quant \quant \text{c} 0.0002 \quant \quan	\$\leq 0.002 \ \circ 0.003 \ \circ 0.001 \ \circ 0.001 \	< 0.002		-		0.008	< 0.002	< 0.002	0.004	0.004	-		20	
CLORD CLOR	\$\cdot 0.002 \ \$\cdot 0.001 \ \$\cdot 0.0021 \ \$\cdot 0.001 \ \$\cdo 0.001 \ \$\cdot 0.001 \ \$\cdot 0.001 \ \$\cdot 0.001 \ \$\cd	< 0.002		-	-	< 0.002	< 0.002	< 0.002	< 0.002	0.0028	-10	NA	10	
Col. 002 Col. 004 Col. 005	<0.002	< 0.002		+	-	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002		i	0.02	
CAUCHY C	\$\circ{0.002}{c0.003} \circ{0.004}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.002} \circ{0.002}{c0.003} \circ{0.003}{c0.003}										1			
Colored Colo	\$\langle 0.25 0.27 0.52 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 < 0.25 <	<0.002	-	Н	H	< 0.002	< 0.002	0.0075	0.0034	< 0.002	6.0	NA	6.0	
Col. Olivo Col	\$\lequiv{0.002} \text{ < 0.003} \text{ < 0.004} \text{ < 0.006} \text{ < 0.007} < 0.0	<0.25	-	+	+	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	-		50	
Col.005 0.0053 <0.0053 <0.0053 <0.0053 <0.0051 <0.0051 <0.0053 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.0055 <0.00	Compounds Compounds Comoto Como	<0.003	H	-	H	<0.003	800.0	<0.003	<0.003	1	1	NA O	0.004	
Compounds Compounds Couloi Coul	crhane <a href="https://doi.org/10.0001/10.000</td><td><0.05</td><td>-</td><td>H</td><td>⊢</td><td>< 0.005</td><td>< 0.005</td><td>< 0.005</td><td>< 0.005</td><td>-</td><td>H</td><td>-</td><td>0.01</td></tr><tr><td> Color Colo</td><td>ethane <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.0020 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <</td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td>T</td><td>1</td><td></td><td></td></tr><tr><td> Color Colo</td><td> \$\leq 0.001 0.0056 0.011 \$\leq 0.001 \$\leq 0.001 \$\leq 0.001 \$\leq 0.002 \$\leq 0.001 \$\leq 0.001 \$\leq 0.002 \$\leq 0.001 \$\leq 0.001</td><td>0.0013</td><td>-</td><td>-</td><td>-</td><td><0.001</td><td><0.001</td><td><0.001</td><td><0.001</td><td><0.001</td><td>0 0000</td><td>9000</td><td>0.0</td></tr><tr><td>cree < 0.0001	C0.001 0.0027 0.0041 C0.001 C0.001 C0.001 C0.020 C0.001	<0.001	< 0.001	-	-	0.0012	< 0.001	< 0.001	<0.001	0.0019	-		NS
cache <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 </td <td> \$\lequiv{0.001} \ \$0.</td> <td><0.001</td> <td>-</td> <td>-</td> <td>-</td> <td>< 0.001</td> <td>0.0022</td> <td>< 0.001</td> <td>0.0012</td> <td>0.0012</td> <td></td> <td></td> <td>NS</td>	\$\lequiv{0.001} \ \$0.	<0.001	-	-	-	< 0.001	0.0022	< 0.001	0.0012	0.0012			NS	
ide 	\$\langle 0.002 \ \langle 0.003 \ \langle 0.003 \ \langle 0.003 \ \langle 0.003 \ \langle 0.003 \ \langle 0.003 \ \langle 0.0022 \ \langle 0.002 \ \langle 0.003 \ \langle 0.	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	-		4S	
Colore C	\$\circ{\ci	<0.003	-	H	H	<0.003	<0.003	<0.003	<0.003	<0.003		SN	NS	
Career C	te <0.001 0.0013 0.0034 <0.001 <0.001 <0.001 <0.002 <0.001 \$\leq\$ 0.001 0.005 0.0084 <0.001 <0.001 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	900.0		-	-	<0.002	<0.002	<0.002	<0.002	<0.002			20	
ughe	Ch.001 0.005 0.0084 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0	<0.001	H	H	-	<0.001	<0.001	<0.001	<0.001	<0.001	-		SIS	
	< 0.002	<0.001	<0.001	-	-	<0.001	<0.001	<0.001	<0.001	<0.001	-	SN	NS	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 0.001 0.0031 0.0063 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<0.002	-	-	-	< 0.002	< 0.002	< 0.002	<0.002	0.0072	-	-	20	
Aberizane <0.001 0.012 0.088 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	COMPT 0000 - 0000 - 0000 - 0000 000	<0.001	15			< 0.001	100'0 >	< 0.001	< 0.001	0.0018	10		SN	
September Septem	~ 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	<0.001	< 0.001		-	< 0.001	< 0.001	< 0.001	< 0.001	0.015		NS	SN	
	Abenzene < 0.001 0.0042 0.032 < 0.001 < 0.001 < 0.001 0.045 < 0.001	<0.001	< 0.001		-	< 0.001	< 0.001	< 0.001	< 0.001	0.0037	1		SZ	
[Xylanes (total)] < 0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0	< 0.003 <0.003 0.0036 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003	<0.003	< 0.003	-		< 0.003	< 0.003	< 0.003	< 0.003	0.0028	10	6	5	

NOTES:
1. Concentrations in milligrams per liter (ing/l, or parts per million).
2. "\scriminglines since detected, value is quantitation finit.
3. RCGW = Reportable concentration for groundwater, from 310 CMR 40.1000.
4. MCP Method I groundwater standards from 310 CMR 40.0974(2).
5. Values abown in bold meet or exceed Method I standards.
6. "NA" = Not applicable.

Table 9 Areas of Environmental Concern Former Chapman Valve Site Pinevale Street, Springfield

Locations Where RC is Exceeded	Constituents >RCS-1	Constituents > RCGW-2
	in Soil	in Groundwater
BT-E	C9-C10 Aromatics,	N/A
	C9-18 Aliphatics	
	C11-C22 Aromatics	
	Acenaphthene	
	Acenaphthylene	
	Benzo(a)pyrene]
	Dibenzo(a,h)anthracene	1
	2-Methylnaphthalene	1
	Naphthalene	1
CM-22	C9-C10 Aromatics	none
	C9-18 Aliphatics	1
	Acenaphthylene	†
	2-Methylnaphthalene	
CM-38	C9-C10 Aromatics	C9-18 Aliphatics
GM 50	Acenaphthylene	C11-C22 Aromatics
	2-Methylnaphthalene	Acenaphthylene
	2-intentymapminatene	Lead
CM-39	Lead	
		none
CM-40	Barium	none
CM 42	Cadmium	C0 40 A15 1 - 5
CM-43	C9-C10 Aromatics	C9-18 Aliphatics
	C9-18 Aliphatics	C11-C22 Aromatics
	2-Methylnaphthalene	Lead
CM-45		Lead
CM-52	Cadmium	
CM-53	Barium	Lead
	Cadmium	
	Lead	
CM-54	Barium	none
	Cadmium	
	Lead	
DP-1	Benzo(a)pyrene	N/A
DP-2	Benzo(a)anthracene	N/A
	Benzo(a)pyrene	1
	Benzo(b)fluoranthene	1
	Dibenzo(a,h)anthracene	1
	Indeno(1,2,3-cd)pyrene	1
	Phenanthrene	1
MW-205	none	Cadmium
IP-4	Benzo(a)anthracene	N/A
•	Benzo(a)pyrene	1 1/**
	Benzo(b)fluoranthene	1
	Dibenzo(a,h)anthracene	1
	Phenanthrene	1
TP-6		NT/A
117-0	Acenaphthene	N/A
	Benzo(a)anthracene	-
	Benzo(a)pyrene	
	Benzo(b)fluoranthene	4
	Dibenzo(a,h)anthracene	
	Indeno(1,2,3-cd)pyrene	_
	2-Methylnaphthalene]
	Naphthalene	
	Phenanthrene	
TP-8	Benzo(a)anthracene	N/A
	Benzo(a)pyrene	
	Benzo(b)fluoranthene	-
	Dibenzo(a,h)anthracene	
	Indeno(1,2,3-cd)pyrene	
	Phenanthrene	
	1 MOMENTULE	F\0/6-22-04\Areas C

F\0/6-22-04\Areas of Concern, by location

LIMITATIONS

- Our report does not present scientific certainties, but rather our professional opinions
 on the data obtained through our assessment. Our report was prepared for the
 exclusive benefit of our client. Reliance upon the report and its conclusions is not
 made to third parties or future property owners. We would be pleased to discuss
 extension of reliance to third parties through execution of a written contract with such
 parties.
- 2. The observations presented in this report were made under the conditions described herein. The conclusions presented in this report were based solely upon the services described in the report and not on scientific tasks or procedures beyond the scope of the project or the time and budgetary constraints imposed by the client. The work described in this report was carried out in accordance with the contract Terms and Conditions.
- 3. In preparing the report O'Reilly, Talbot, Okun & Associates, Inc. relied on certain information provided by state and local officials and other parties referenced herein, and on information contained in prior site reports. Although there may have been some degree of overlap in the information provided by these sources, O'Reilly, Talbot, Okun & Associates, Inc. did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this assessment.
- 4. Limited observations were made of the site and of the structures on the site, as indicated within the report. Where access to portions of the site or to structures on the site was unavailable or limited, we render no opinion as to the presence of hazardous materials/ oil or asbestos containing materials, or to the presence of indirect information relating to hazardous materials/ oil in that portion of the site. No destructive sampling was conducted to expose hidden potentially asbestos containing materials, and significant amounts of asbestos could be located in these areas, which would not be observed during our visit. In addition, we render no opinion as to the presence of hazardous materials/ oil or asbestos containing materials, where direct observations of portions of the site were obstructed by objects or coverings on or over these surfaces.
- 5. Unless otherwise specified in the Report, we did not perform testing or analyses to determine the presence or concentration of asbestos at the site or in the environment at the site.
- 6. The purpose of this Report was to assess the physical characteristics of the subject site with respect to the presence of hazardous material or oil in soil or groundwater at the site. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.

(911)

(950)

TABLE 3-1
TANK INVENTORY

Tank #	Location	Total Capacity	Inches of Product	Туре
1.	Old Power House	25,000 g	47	#4 Oil
2.	Old Power House	25,000 g	91	#4 Oil
3.	Old Power House	25,000 g	13	#6 Oil
4.	Old Power House	25,000 g	65	Water/Sludge
5.	Pattern Storage	100 g	?	Alcohol
6.	Brass Fdy #1	3,000 g	46	#2 Oil
7.	Brass Fdy #2	3,000 g	76	#2 Oil
8.	Lot Essex & Pinevale	650 g	8	Gasoline
9.	Dept. 40	8,000 g	?	#2 Oil
10.	New Power House #1	20,000 g	13	\$4 oil
11.	New Power House #2	20,000 g	.11	Water/sludge
12.	Dept. #7 Hill #1	20,000 g	94	#2 Oi1
13.	Dept. #7 Hill #2	20,000 g	6	Water/oil
14.	Dept. #7 Hill #3	20,000 g	6	Water/oil
15.	Dept. #7 Hill #4	20,000 g	60	#6 Water/sludge
16.	Dept. #7 Hill #5	20,000 g	6	#6 Sludge
17.	Dept. #7 Hill #6	20,000 g	6	#6 Sludge
18.	Dept. #7 Ship.	3,000 g	. 0	0
19.	Dept. 40	8,000 g	_	#2 Oil

UST 1-4 EXCAVATION AREA (EXC-1) SOIL SAMPLING LOCATIONS

CRANE MANUFACTURING FACILITY

SPRINGFIELD, MA

PROJECT NUMBER: FIGURE NUMBER:

10585,0010

APPROX. SCALE: CHECKED 3Y: TOB

DRAWN BY: REVISED 3Y
PWF 01/26/98

FIGURE NUMBER:

REVISED 3Y
TOB

VATCASSOCIATES INC.

39 Spruce Street Eost Longmeodow, MA 01028 Tel.(413)525-1198 Fax.(413)525-8227

TABLE 2

SUMMARY OF CONSTITUENTS DETECTED IN SITE MEDIA*

Constituent	Soil	Groundwater	Air	Groundwater	Oil-
Volatile Organic Compounds	 			Infiltration	phase
(VOCs)		1			
Benzene	NA ^b	Χ ^ε	ND ^d		
Chloroform	NA	X		ND	NA
1,1-Dichloroethane	NA NA	$\frac{\lambda}{X}$	ND	ND	NA
Methylene chloride	NA NA	X	NA	ND	NA
MTBE	NA NA	X	NA	ND	NA
Toluene	NA NA	X	ND	NA	NA
1,1,1-Trichloroethane	NA NA		ND	ND	NA
	11/1	X	ND	ND	NA
Semivolatile Organic			· · · · · · · · · · · · · · · · · · ·		
Compounds (SVOCs)					
Acenaphthylene	$\frac{1}{X}$	ND ND	NA NA	374	
Anthracene	X	ND	NA NA	NA NA	NA
Benzo(a)anthracene	X	ND	NA NA	NA	NA
Benzo(a)pyrene	X	ND	NA NA	NA NA	NA
Benzo(b)fluoranthene	X	ND	NA NA	NA	NA
Benzo(g,h,i)perylene	$\frac{X}{X}$	ND ND		NA	NA
Benzo(k)fluoranthene	X	ND ND	NA NA	NA	NA
Chrysene	$\frac{X}{X}$	ND ND	NA NA	NA	NA
Dibenz(a,h)anthracene	$\frac{X}{X}$	ND	NA NA	NA	NA
Fluoranthene	X		NA NA	NA	NA
Fluorene	$\frac{\lambda}{X}$	ND	NA	NA	NA
Indeno(1,2,3-cd)pyrene	$\frac{\lambda}{X}$	ND .	NA	NA	NA
2-Methylnaphthalene	$\frac{\lambda}{X}$	ND	NA	NA	NA
Naphthalene	$\frac{\lambda}{X}$	ND	NA	NA	NA
Phenanthrene		ND ND	NA	NA	. NA
Pyrene	X	ND	NA	NA	NA
	X	ND	NA	NA	NA

TABLE 2 (Continued)

SUMMARY OF CONSTITUENTS DETECTED IN SITE MEDIA

Constituent	Soil	Groundwater	Air	Groundwater Infiltration	Oil- phase
Total Petroleum Hydrocarbons (TPH)	X	X	Χ¢	X	NA
Hydrocarbon Analyses					
Other Hydrocarbons	X	NA NA	NA	ļ	
C ₉ -C ₁₈ Aliphatics	X	NA NA	NA NA	NA	NA
C ₁₉ -C ₃₆ Aliphatics	X	NA NA		NA	NA
C ₁₀ -C ₂₂ Aromatics	X	NA NA	NA NA	NA NA	NA NA
Polychlorinated Biphenols (PCBs)					
PCB-1254	X	X	NA	ND	375
PCB-1260	ND	X	NA NA	ND	ND
Total PCB	X	X	NA NA	ND ND	ND ND
Metals					
Arsenic	X	X	NA	, , , , , , , , , , , , , , , , , , ,	
Barium	X	NA NA	NA NA	NA	NA
Dissolved Barium	NA.	X	NA NA	NA	NA
Cadmium	X	$\frac{x}{X}$	NA NA	NA NA	NA
Dissolved Cadmium	NA	X	NA NA	NA NA	NA
Chromium	$\frac{1}{X}$	X	NA NA	NA NA	NA
Copper	NA	X	NA NA	NA NA	NA
Lead	X	X	NA NA	NA NA	NA
Mercury	$\frac{1}{x}$	$\frac{x}{x}$	NA NA	NA NA	NA
Nickel	NA	$\frac{x}{X}$	NA NA	NA NA	NA
Selenium	X	ND	NA NA	NA NA	NA
Silver	ND I	X	NA NA	NA NA	NA
Zinc	NA	$\frac{x}{x}$	NA NA	NA NA	NA NA

^a This table represents a summary of all constituents detected in media sampled from the site. It does not present a complete list of all constituents that were analyzed for in the site media, or a list of the constituents retained of interest in the risk assessment. For soils, the table presents detected constituents remaining on-site after completion of Interim

b NA indicates the constituent was not analyzed for in the referenced medium.

^c X indicates the constituent was detected in the referenced medium.

^d ND indicates the constituent was not detected in the referenced medium.

^{*} Detection of oil per oil mist air sample.

Risk Assessment Report Crane Co. Manufacturing Facility Indian Orchard, Springfield, MA

TABLE 3 SUMMARY OF CONSTITUENTS DETECTED IN SITE SOILS

DEP Waiver Site No. 1-0170

]		············		т-	- , -	7			-																			
MADEP	Background Level							1		1	:		!	1		i			ł	1			1	1			1	1
Background	Range of Detected	(Minimum-	Maximum)			QN.	QN	1	di.	AN.	1		GN	Q		QN	QN		Q	QN			-	1			-	
Background	Arithmetic Average ^a					EZ		ı	CIN		ŀ			Q.	4	QN	Q		ND	QN								 ! ·
Range of	Detected Values (Minimum- Maximum)					12	CN	3	0.9	C.N.	}	7		<u> </u>	1 03	2.73	ON ON	- 6	1:/	Q.		0.039 - 0.561	105.0 - 750.0	0.043 - 0.106		2 570		<u></u>
Arithmetic	Average					2.64	!		2.11	1		2.61		!	2 00	201	1	3 7 8	07.7	;		0.057	1000	0.042		1.286		
Frequency of	Detection					1/13 (7.7%)	;		1/13 (7.7%)			1/13 (7.7%)	1		1/13 (7.7%)		·	1/13 (7 7%)	(0/////////////////////////////////////	;		5/31 (16.1%)	2/77 (11 10/)	(11.170)		1/2 (50%)		
Potential Source Area						Site-wide	Site-wide (excluding samples	beneath permanent foundations)	Site-wide	Site-wide (excluding samples	beneath permanent foundations)	Site-wide	Site-wide (excluding samples	beneath permanent foundations)	Site-wide	Site-wide (excluding samples	beneath permanent foundations)	Site-wide	Site mide (evolveling manufact	beneath permanent foundations)		Site-wide	Site-wide (excluding samples	beneath permanent foundations)		Site-wide	Site-wide (excluding samples	beneath permanent foundations)
Constituents Defected			Semivolatiles (mg/kg) ^b	ò	Repros(h)fluorent	Deliza (v) rigoralitatic			rinorene			2-Methylnaphthalene			Naphthalene			Phenanthrene			PCBs (mg/kg)	PCB-1254			Hydrocarbons (mg/kg)	C ₉ -C ₁₈ Aliphatics		

TABLE 4 SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

Constituent Detected (units)	Frequency of Detection	Range of Detection (Minimum - Maximum)	Site Background ^b	Monitoring Well Retained In
VOLATILTES (μg/L)		1744XIIIIUIII)		
Benzene	1/71 (1.4%)	8.5	ND°	MW-5
Chloroform	1/49 (2.0%)	10	ND ND	
1,1-Dichloroethane	2/49 (4.1%)	4.0 - 6.0	ND ND	MW-19
Methylene chloride	11/49 (22.4%)	6.0 - 350	ND ND	<u></u>
·	(22.470)	[177 - 240]°	שא	MW-6
MTBE	1/46 (2.2%)	1.9	ND	MW-34
Toluene	7/71 (9.9%)	0.7 - 3.3	1.7	
	(3.574)	[2.4 - 3.3] ^f	1./	MW-10; MW-14
1,1,1-Trichloroethane	2/49 (4.1%)	8.9 - 16.0	ND	
PCBs (μg/L)				
PCB-1254	1/55 (5.00)			
PCB-1260	1/35 (2.9%)	0.1	ND	MW-10
Total PCBs	1/35 (2.9%)	0.06	ND	MW-13
Total PCBS	2/30 (6.7%)	0.06 - 0.1	ND	MW-10; MW-13
TPH (mg/L)	30/60 (50.0%)	0.49 - 24 [4.9 - 16] ^g	1.2	MW-5; MW-26
METALS (mg/L)h			***	
Total Arsenic (1988)	18/20 (90.0%)	0.002 - 0.46	NAi	MW-1 thru MW-4; MW-6 thru MW-12; MW-14; MW-16 thru
Dissolved Barium (1996)	16/17 (94.1%)	0.025 - 0.339	0.149	MW-19 MW-14; MW-18; MW-19; MW-32; MW-33
Total Cadmium (1988)	18/20 (90.0%)	0.003 - 0.088	NA	MW-2 thru MW-4; MW-6 thru MW-11; MW-13 thru MW-19
Dissolved Cadmium (1996)	4/17 (23.5%)	0.0005 - 0.0011	ND	MW-10; MW-12; MW-16; MW-17
Total Chromium (1988)	20/20 (100.0%)	0.002 - 0.172	NA	MW-16; MW-17 MW-1 thru MW-4; MW-6 thru MW19
Total Copper (1988)	19/20 (95.0%)	0.02 - 2.21	NA	MW-1 thru MW-4; MW-6 thru MW14; MW-16 thru MW-19

TABLE 4 (Continued) SUMMARY OF CONSTITUENTS DETECTED IN GROUNDWATER

Constituent Detected (units)	Frequency of Detection*	Range of Detection (Minimum - Maximum)	Site Background ^b	Monitoring Well Retained In
METALS (mg/L) ^h				
Total Lead (1988)	20/20 (100.0%)	0.0066 - 0.87	NA	MW-1 thru MW-4; MW-6 thru MW19
Total Mercury (1988)	4/20 (20.0%)	0.0006 - 0.00199	NA	MW-4; MW-6; MW-10; MW-16
Total Nickel (1988)	20/20 (100.0%)	0.007 - 0.308	NA	MW-1 thru MW-4; MW-6 thru MW19
Total Silver (1988)	2/20 (10.0%)	0.001 - 0.04	NA	MW-4; MW-15
Total Zinc (1988)	20/20 (100.0%)	0.02 - 3.7	NA	MW-1 thru MW-4; MW-6 thru MW19

^a Frequency of detection is presented both as a fraction and as a percentage.

^b Background groundwater is represented by CMW-30.

[°] ND = nondetect.

d Dashes (--) indicate the constituent was not retained for further evaluation.

Range of detection of values of methylene chloride retained for further evaluation in the risk assessment.

f Range of detection of values of toluene retained for further evaluation in the risk assessment.

⁸ Range of detection of values of TPH retained for further evaluation in the risk assessment

^h Groundwater samples collected in 1988 were analyzed for total metals; samples collected in 1996 were analyzed for dissolved phase metals.

NA = not analyzed for the referenced constituent.

Page 5

Risk Assessment Report Crane Co. Manufacturing Facility Indian Orchard, Springfield, MA

TABLE 3 SUMMARY OF CONSTITUENTS DETECTED IN SITE SOILS

DEP Waiver Site No. 1-0170

CRANE CO.
INDIAN ORCHARD FACILITY
SPRINGFIELD, MASSACHUSETTS

Background Level MADEP ; ł 17 45 45 12 Background Minimum-Maximum) Range of Values Detected 15-69.8 0.04 - 0.05 0.04 - 0.0515-69.8 ŧ i ND S Ð £ ; ł 1 Background Arithmetic Average^a 30.5 (19.3)30.5 0.03 0.03 0.03 0.03 呈呈 £ g ŧ I Detected Values (Minimum-Maximum) 27.5 - 4,690 28.6 - 11,300 2.3 - 4,140 18 - 15,000 10 - 11,300 Range of 0.04 - 0.264.96 - 7.97 4.96 - 7.97 0.04 - 0.2612.4 - 64.1 18 - 18012.4 - 64.1 į ł Arithmetic Average 3,542.9 1041.7 2,359 2,071 823.8 (26.1)60.3 (28.9)3.42 (0.09)28.8 30.4 ļ 1 0.10 Frequency of Detection 65/77 (84.4%) 50/53 (94.3%) 8/11 (72.7%) 13/22 (59.1%) 5/22 (22.7%) 22/22 (100%) 18/18 (100%) 12/18 (66.7%) 2/2 (100%) 5/18 (27.8%) 2/2 (100%) 3/4 (75%) beneath permanent foundations) beneath permanent foundations) beneath permanent foundations) beneath permanent foundations) Site-wide (excluding samples beneath permanent foundations) Site-wide (excluding samples beneath permanent foundations) beneath permanent foundations) Site-wide (excluding samples Site-wide (excluding samples Site-wide (excluding samples Site-wide (excluding samples Site-wide (excluding samples Potential Source Area Site-Wide Site-wide Site-wide Site-wide Site-wide Site-wide Constituents Detected Other Hydrocarbons C19-C36 Aliphatics C₁₀-C₂₂ Aromatics Metals (mg/kg) TPH (mg/kg) Cadmium Arsenic Barium

Risk Assessment Report Crane Co. Manufacturing Facility Indian Orchard, Springfield, MA

TABLE 3
SUMMARY OF CONSTITUENTS DETECTED IN SITE SOILS

DEP Waiver Site No. 1-0170

CRANE CO. INDIAN ORCHARD FACILITY

Constituents Delete		SPRINGFIELD, MASSACHUSETTS	D, MASSACHUSET	ETTS			
Deleging Company	Potential Source Area	Frequency of Detection	Arithmetic Average ^a	Range of Detected Values (Minimum- Maximum)	Background Arithmetic Average*	Background Range of Detected Values	MADEP Background Level
Chromium	Site-wide	32/33 (1000)				(Minimum- Maximum)	
		(100%)	9.58	4.3 - 19.5	5.44	3.73 - 8.32	29
	Site-wide (excluding samples	18/18 (100%)	10.35	4.3 - 19.5	(5.33)	273 0 22	
. ead	beneath permanent foundations)		(9.15)		(5.53)	3.73 - 8.32	29
	oue-wide	16/22 (72.7%)	16.9	2.54 - 73	ND	QN	66
	Site-wide (excluding samples	14/18 (77 80/)	(0.00)				
	rmanent fo	(6/0://) 01/11	(13.70)	2.54 - 73	Q.	QN	66
Mercury	Site-wide	9/22 (40.9%)	0.02	0.02 - 0.07	QN	GN	0.3
	Site-wide (excluding complex	210 750 000	(0.02)				}
	beneath permanent foundations)	(%0.05) 81 /6	0.02	0.02 - 0.07	QN	Q.	0.3
Selenium	Site-wide	2/22 (9.1%)	2.84	6.19 - 6.44	QN	QN	0.5
	Site-wide (excluding samples	2/18 (11 192)	(2.49)				<u> </u>
	beneath permanent foundations)	6/10/11/01/0	(2.5)	6.19 - 6.44	OZ Z	QN QN	0.5

* One-half the sample quantitation limit was used to represent nondetect data in the calculation of the arithmetic average; median value presented in parenthesis below average value for metals. Average and median values have been rounded to the same number of significant figures as the corresponding laboratory analytical data.

^b Acenaphthylene, anthracene, benzo(a) anthracene, benzo(a) pyrene, benzo(g,h,i) perylene, benzo(k) fluoranthene, chrysene, dibenz(a,h) anthracene fluoranthene, indeno (1, 2, 3ed) pyrene, and pyrene were only detected in soil samples obtained from the Building #1, Department #1 Foundry and are considered exempt data.

SOIL SUMMARY DATA TABLE

Pinevale, Goodwin, and Moxon Streets Springfield, Massachusetts DEP Site No. 1-0170 Crane Co. Manufacturing Facility

Sampling Date: 19-20 December 1995

Compound Released and Assessed VCC.		Total Petroleum Hydrocarbons (TPH) IPH	Polychlorinated Biphenyls (PCBs) Total PCBs
Units	mg/kg mg/kg mg/kg	mg/kg	,mg/kg
Minimum Defection B	0.04 0.02 0.01-2.0	19.6-20.0	0.023-0.026
B. 27.484.32 B	ON ON ON	BDL	Q.
H3340N-33 B	<u> </u>	BDL	QN
B-34MW-34 B- 110*12)	BDL BDL ND	BDL	QX QX
B-35/WW-35 B. (10°-12)	ND BDL ND	20.7	Q
B.36.NW.36 (10-12)	999	BDL	Q.

NOTES:

mg/kg - milligrams per kilogram VOCs - Volatile Organic Compounds

ND - compound was not detected above or below the laboratory detection limit

BDL - compound was detected below the applicable laboratory detection limit, however, could not be quantified

Laboratory analysis for VOCs via SW846 Method 8240

Laboratory analysis for TPH via EPA Method 418.1 Laboratory analysis for PCBs via SW846 Method 8080

GROUNDWATER SUMMARY DATA TABLE

Crane Co. Manufacturing Facility Pinevale, Goodwin, and Moxon Streets Springfield, Massachusetts DEP Site No. 1-0170

Sampling Date: 12 January 1996

Compound	Units	Mitanum Betection Limits	B-32/MW-32 (10-12)	B-33/MW-33	E-34/MW-34	B:35/MW:35	B-36/MW 36	Trip Mank
Halogenated and Aromatic VOCs				4		(10*125)	(10:12)	
Measured 8240 Parameters	l/gu	1.0-400	ND	ND	QN	Q	Ę	Ę
Total Petroleum Hydrocarbons (TPH) TPH	mg/l	0.44-0.66	0.83	č	.		<u>.</u>	Q.
Polychlorinated Biphenyls (PCBs)			}	700	78'0	BDL	BDL	NM
Total PCBs	ug/I	0.05-0.07	QN	ND	QN	QN.	Q.	MN
NOTES:						~		
mg/l - milligrams per liter ug/l - micrograms per liter VOCs - Volatile Organic Compounds ND - compound was not detected above or below the laboratory detection limit BDL - compound was detected below the applicable laboratory detection limit; however, could not be quantified NM - Not Measured	below the la	aboratory detectio	n limit i limit, however, o	ould not be quantified			·	

Laboratory analysis for VOCs via SW846 Method 8240 Laboratory analysis for TPH via EPA Method 418.1 Laboratory analysis for PCBs via EPA Method 608

TABLE 3

MONITORING WELL SUMMARY

Crane Co. Manufacturing Facility Pinevale, Goodwin, and Moxon Streets Springfield, Massachusetts **DEP Site No. 1-0170**

20-21 August 1996

Location	n Date	Steel Casing Elevation	Depth to LNAPL	LNAPL Thickness	Depth to Water	Water Elevation	er.
MW-1	21 Aug 96	203.36	ND	NA	6.67	196.69	Comments
MW-2	21 Aug 96	204.66	ND	NA	7.13	197.53	
MW-3	20 Aug 96	NS	DRY	DRY	DRY	NA	•
MW-4	20 Aug 96	NS	7.50	NM	NM	NM	viscous oil; thickness could
MW-5	20 Aug 96	NS	ND	NA	7.76	NM	not be determined
MW-9	20 Aug 96	205.11	ND	NA	9.61	195.50	•
MW-10	20 Aug 96	210,33	ND	NA	13.86	196,47	
MW-11	20 Aug 96	214.77	DRY	DRY	DRY	NA	·
MW-12	20 Aug 96	218.50	NM .	NA	NM	NM	
MW-13	20 Aug 96	221.18	ND	NA	13.53	207.65	_
MW-14	21 Aug 96	226.57	ND	NA	14.23	212.34	
MW-15	20 Aug 96	219.62	ND	NA	11.95	207.67	
MW-16	20 Aug 96	219.89	ND	NA	13.74	206.15	
MW-17	20 Aug 96	211.77	ND	NA	9.00	202.77	
MW-18	20 Aug 96	207.03	ND	NA	8.56	198.47	
MW-19	20 Aug 96	206.85	ND	NA	8.70	198.15	
MW-30*	21 Aug 96	207.78	ND	NA-	8.82	198.96	
MW-32*	20 Aug 96	224.17	ND	NA	11.74	212.43	
MW-33*	20 Aug 96	211.23	ND	NA	12.75	198.48	
MW-34*	21 Aug 96	205.32	ND	NA	8.32	197.00	•
MW-35	21 Aug 96	NS	NF	NF	NF	NF	,
MW-36*	20 Aug 96	201.98	ND	NA	8.65	193.33	

NOTES:

ND - Not Detected

NA - Not Applicable NS - Not Surveyed

NM - Not Measured

NF - Well Not Found LNAPL - Light Nonaqueous Phase Liquid

ATC 2/97

^{*}Wells installed after June 1995 survey. Steel casing elevations derived from PVC survey elevation (October, 1996) corrected with field difference between steel and PVC casing elevations.

TABLE 4

GROUNDWATER LABORATORY ANALYTICAL DATA

Crane Co. Manufacturing Facility Pinevale, Goodwin, and Moxon Streets Springfield, Massachusetts DEP Site No. 1-0170

06 January 1995 to 03 October 1996

Location	Date	TPH (mg/L)	PCB (ug/L)	VOCs (ug/L)	
MW-1	06 Jan 95	0.56			Comments
	12 Oct 95	ND	NM ND	BDL (1,1 DCE); BDL (PCE)	
	22 Aug 96	ND	ND	BDL (1,1,1 TCÉ); BDL (PCÉ) ND	
MW-2	15 Mar 95	BDL	NM	ND	
	12 Oct 95	ND	ND	ND ND	
	22 Aug 96	ND	3.175	~ ND	
MW-5	06 Jan 95	NS	NS	NS	***
	12 Oct 95	NS	NS	NS	Well Not Found
	23 Aug 96	7.53	ND	8.5 (B), 2.6 (T), BDL (X)	· ·
MW-6	06 Jan 95	0.77	NM	ND	
	12 Oct 95	NS	NS	NS	Wall Maria
	20 Aug 96	NS	NS	NS	Well Not Found
MW-9	15 Mar 95	0,49	NM	ND	
	13 Oct 95	ND	ND	ND .	
	23 Aug 96	ND	ND	0.5 (T)	
MW-10	06 Jan 95	1.16	NM	ND	
	13 Oct 95	ND	ND	ND	
	22 Aug 96	ND	0.10	2.4 (T)	
MW-12	06 Jan 95	0.64	NM	ND	
	13 Oct 95	ND	ND	ND	2
	03 Oct 96	0.77, 0.69**	ND, ND**	1.0 (T), 0.8 (T)**	•
MW-13	06 Jan 95	0.80	NM	ND .	
	13 Oct 95	ND	0.06	ND .	
	21 Aug 96	ND	ND	0.7 (M)	
MW-14	06 Jan 95	0.77	NM	ND	
	13 Oct 95	NS	NS	NS	Dry
	21 Aug 96	BDL	ND	3.3 (T)	Diy
MW-15	06 Jan 95	0.51	NM	ND	a.
	12 Oct 95	ND	ND	ND	
	21 Aug 96	ND	ND	0.9 (T)	
MW-16	15 Mar 95	BDL	NM	ND	
	12 Oct 95	ND	ND	ND	
	21 Aug 96	ND	ND	BDL (T)	
MW-17	15 Mar 95	BDL	NM	BDL (PCE)	
	12 Oct 95	ND	ND	BDL (PCE); BDL (1,1,1 TCE)	
	22 Aug 96	ND	ND	ND ND	
MW-18	15 Mar 95	BDL	NM	ND	
	12 Oct 95	ND	ND .	BDL (MC)	
	22 Aug 96	ND	ND	0.9 (T)	
MW-19	06 Jan 95	0.42	NM	· ND	
	12 Oct 95	BDL	ND	10.0 (C)	
	22 Aug 96	ND	ND	BDL (T)	•
MW-26	06 Jan 95	NS	NS	NS	
	12 Oct 95	NS	NS	NS	
	03 Oct 96	4.90	ND	1.1 (T)	
MW-30	06 Jan 95	ND	ND	ND	
	12 Oct 95	NS	NS	ND NS	
	22 Aug 96	ND	ND	1.7 (T)	

ATC 2/97

TABLE 4 (Continued)

Location	Date	TPH (mg/L)	PCB (ug/L)	VOCs (ug/L) Comments
MW-32	12 Jan 96	0.83	ND	ND
	21 Aug 96	BDL	ND	1.4 (T)
MW-33	12 Jan 96	BDL	ND	ND
	22 Aug 96	ND	ND	1.2 (T)
MW-34	12 Jan 96	0.82	ND	ND**
	23 Aug 96	ND	ND	1.8 (T), 1.9 (M)
MW-35	12 Jan 96	BDL	ND	NM
	23 Aug 96	NS	NS	NS
MW-36	12 Jan 96	BDL	ND	ND
	23 Aug 96	ND	ND -	0.7 (T)
Trip Blank	13 Oct 95	NM	NM	ND
	12 Jan 96	NM	NM	ND
	20 Aug 96	NM	NM	1.2 (T)
	03 Oct 96	NM	NM	0.6 (T)

NOTES:

** Duplicate Sample
B - Benzene; T - Toluene; X - Xylenes; M - MTBE, PCE - Tetrachloroethylene; 1,1,1 DCE - 1,1,1 Dichloroethane; 1,1,1 TCE - 1,1,1 Trichloroethane; MC - Methylene Chloride; C - Chloroform
ND - Not Detected
NS - Not Sampled
NM - Not Measured
BDL - Below Detection Limit
mg/L - Milligrams per Liter
ug/L - Micrograms per Liter

TPH analyzed via EPA Method 418.1 PCBs analyzed via EPA Method 608 VOCs analyzed via EPA Method 8240 (1/95 and 3/95), Method 624 (10/95) and Method 602 (8/96 and 10/96)

Manne ARR

The formale

SUMMARY OF SOIL LABORATORY ANALYTICAL RESULTS FOR EXCAVATION 1 UST 1-4 AREA

Crane Co. Manufacturing Plant Goodwin and Pinevale Streets Springfield, Massachusetts

DEP Waiver Site No. 1-0170

1997
9
\dashv
<u>;</u>
క
~
둤
చ
ĕ
13 D
~
13
9
₩
õ
Æ
50
.≘
~
눔
9
- 2
(7)

Сатроний	Units	Minimum Detection	5.7	6.8	5	*
		Limits	W. Sidewail	W. Sidewall	E. Sidewall	E. Sidewall
			(95.10)	(9+10)	(7.8)	75. Collect
Extractable Petroleum Hydrocarbons (EPH)	EPH)					
c9-c18 Aliphatics	mg/kg dry wt.	2.4-27.8	NM	É	0.570	5 12
c19-c36 Aliphatics	mg/kg dry wt.	2,2-25,4	N.W.	, c	4.40	MN
c10-c22 Aromatics	mg/kg dry wt.	2.8-32.9	MN	27.5	4,140	W.
Acenaphthene	mg/kg dry wt.	1.4-15.9	NM	QX	4,020 BDI	MIM
Acenaphthylene	mg/kg dry wt.	1.4-15.9	NM	E	RDI	MINI
Benzo(a)anthracene	mg/kg dry wt.	2.0-23.3	NM	2	BDI	MM
Benzo(a)pyrene	mg/kg dry wt.	2.1-24.5	NM	S	BDI	NM
Benzo(b)fluoranthene	mg/kg dry wt.	2.5-29.0	NM	R	BDI.	MN
Benzo(k)fluoranthene	mg/kg dry wt.	1.8-21.2	NIM	Q.	BDI	NIM
Chrysene	mg/kg dry wt.	1.8-21.2	NM	R	BDI.	MN
Fluoranthene	mg/kg dry wt.	2.0-23.0	NM	R	BDE	MN
Fluorene	mg/kg dry wt.	1.7-19.7	NM	R	BDL	NN N
2-Methylnaphthalene	mg/kg dry wt.	1.2-13.8	MN	8	BDL	MN
Naphthalene	mg/kg dry wt.	14-159	NM	QN	BDI	N.V.
Phenanthrene	mg/kg dry wt.	1.9-2.1	NM	R	BDL	MN
Pyrene	mg/kg dry wt.	2.0-23.6	NM	ND	BDL	NM
Total Petroleum Hydrocarbons (TPH)						
#2/#4 Fuel Oil or Diesel	mg/kg dry wt.	8.3-1,200	Q.	NM	M	Ę
#6 Fuel Oil	mg/kg dry wt.	17.0-2,500	Q	NM	W.	
Gasoline	mg/kg dry wt.	8.3-1,200	Ð	NM	Ž	3 5
Jet Fuel	mg/kg dry wt.	8.3-1,200	CN	N	NN NN	9 5
Kerosene	mg/kg dry wt.	8.3-1,200	ON	NM	N N	2 5
Other Hydrocarbons	mg/kg dry wt.	8.3-1,200	BDL	NM	NM	2,200

NOTES:

mg/kg - milligrams per kilogram

ND - compound was not detected above or below the laboratory detection limit

NM - compound was not measured

BDL - compound was detected below the applicable laboratory detection limit; however, could not be quantified

Laboratory analysis for EPH via Mass DEP Draft 1.0 Laboratory analysis for TPH via SW846 8015 Modified

1 1

Marin , with

Parameter and A

Gertain seeming

SUMMARY OF SOIL LABORATORY ANALYTICAL RESULTS FOR EXCAVATION 1 UST 1-4 AREA

Crane Co. Manufacturing Plant

Goodwin and Pinevale Streets Springfield, Massachusetts

DEP Waiver Site No. 1-0170

Sampling Date: 02 July 1997

1

8.3-1,200 ND ND ND 8.3-1,200 ND ND ND 8.3-1,200 ND ND ND 8.3-1,200 39 9.300 5.800	mg/kg mg/kg mg/kg mg/kg	mg/kg 8.3-1,200 ND ND ND ND mg/kg 8.3-1,200 ND ND ND ND ND ND ND ND ND ND ND ND ND	mg/kg 8.3-1,200 ND ND ND ND mg/kg 8.3-1,200 ND ND ND ND ND ND ND ND ND ND ND ND ND
8.3-1,200 ND ND ND 8.3-1,200 ND ND ND S.3-1,200 ND ND ND S.3-1,200 39 9.300 5.800	8.3-1,200 ND ND ND ND 8.3-1,200 ND S.3-1,200 39 9,300 5,800	8.3-1,200 ND ND ND ND 8.3-1,200 ND S.3-1,200 39 9,300 5,800	8.3-1,200 ND ND ND ND 8.3-1,200 ND S.3-1,200 39 9,300 5,800
8.3-1,200 ND ND ND 8.3-1,200 ND ND ND 8.3-1.200 39 9300 5800	8.3-1,200 ND ND ND 8.3-1,200 ND ND ND S.3-1,200 39 9,300 5,800	8.3-1,200 ND ND ND 8.3-1,200 ND ND ND ND 8.3-1,200 39 9,300 5,800	8.3-1,200 ND ND ND 8.3-1,200 ND ND ND ND 8.3-1,200 39 9,300 5,800
8.3-1,200 ND ND ND 8.3-1,200 39 9300 5800	8.3-1,200 ND ND ND 8.3-1,200 39 9,300 5,800	8.3-1,200 ND ND ND 8.3-1,200 39 9,300 5,800	8.3-1,200 ND ND ND 8.3-1,200 39 9,300 5,800
mg/kg 8.3-1,200 ND ND ND nD mg/kg 8.3-1,200 39 9 300 5 800	mg/kg 8.3-1,200 ND ND ND nD nD nD nD ng/kg 8.3-1,200 39 9,300 5,800	mg/kg 8.3-1,200 ND ND ND nD mg/kg 8.3-1,200 39 9,300 5,800	mg/kg 8.3-1,200 ND ND ND mD mg/kg 8.3-1,200 39 9,300 5,800
mg/kg 8.3-1.200 39 9.300 5.800	mg/kg 8.3-1,200 39 9,300 5,800	mg/kg 8.3-1,200 39 9,300 5,800	mg/kg 8.3-1,200 39 9,300 5,800
mg/kg 8.3-1.200 39 9300 5800	mg/kg 8.3-1,200 39 9,300 5,800]	mg/kg 8.3-1,200 39 9,300 5,800]	mg/kg 8.3-1,200 39 9,300 5,800]
	3,000	0,000	3,400
00000			

NOTES:

mg/kg - milligrams per kilogram

BDL - compound was detected below the applicable laboratory detection limit, however, could not be quantified ND - compound was not detected above or below the laboratory detection limit

Laboratory analysis for PAHs via SW846 Method 8270

Laboratory analysis for TPH via SW846 8015 Modified

Mary or service

SUMMARY OF SOIL LABORATORY ANALYTICAL RESULTS FOR EXCAVATION 2 AND 3

Crane Co. Manufacturing Plant Goodwin and Pinevale Streets Springfield, Massachusetts

DEP Waiver Site No. 1-0170

Sampling Date: 08 December 1997

000400000000000000	5
	Š
Hom	
	-
2 H 2	
6	
3 % ~	
7 2 4 8	
E 5.	
2.4.4	
<i>a</i> =	
E	
•	
	(
	2
	Η,
	S
	ons (
	Ā
	ā
	õ
	ij
	Ā
	Ξ.
	E
	le I
**	2
	et
2	A,
	-
Com	ē
	_

Volatile Organic Compounds (VOCs)	mg/kg	20.0-22.0	28.6	34,300
Acetone	mg/kg	0.08	MM	BDL
Polychlorinated Biphenyls (PCBs) Total PCBs	mg/kg	0.025	NM	Q.

NOTES:

mg/kg - milligrams per kilogram ND - compound was not detected above or below the laboratory detection limit NM - compound was not measured

BDL - compound was detected below the applicable laboratory detection limit; however, could not be quantified

Laboratory analysis for TPH via EPA Method 418.1 Laboratory analysis for VOCs via SW846 8240

Laboratory analysis for PCBs via SW846 8080

TABLE 1

SUMMARY OF POST-EXCAVATION SOIL ANALYTICAL DATA

Oily Soil Areas #2 and #3 Former Crane Manufacturing Facility Goodwin and Pinevale Streets Springfield, Massachusetts

DEP Waiver Site No. 1-0170 Sampling Date: 18 November 1996

Arra#3 Grids (2)	2 74	50.5
Arra #3 Grids (s.H.	648	9
Area #2 Grids f/M (1.5)	500	
Grid Samples Area #2 Grids IN (1.5)	927	
Compusite Area #2 Grids H/D (1.5)	540	
Area #2 Grids GF (1.5)	283	
Area #2 Grids F-O (1 5)	113	
Area #2 Grids E.R (2)	64.8	
Minimum Detection Limits	19.6 - 20.1	
Units Musimum Detection Limits	mg/kg	
	Total Petroleum Hydrocarbons (TPH) mg/kg 19.6	
Compared	Total Pet	NOTES:

mg/kg - milligrams per kilogram Laboratory analysis for TPH via EPA Method 418.1

SOIL SAMPLE DESCRIPTIONS

Crane Co.
Pinevale, Goodwin and Moxon Streets
Springfield (Indian Orchard), Massachusetts
RTN 1-0170
NON-WE-03-3A070

Sampling Date: 27 August 2003

Soil Sam	ple Location	Ground Surface Material	Soil Description
B-2	B-2A B-2B	Soil Soil	Medium to dark brown medium to fine sand, some gravel, moist, loose, no odor or stains Light brown coarse to medium sand, some gravel, moist, loose, no odor or stains
В-3	В-ЗА	Soil	Medium brown medium to fine sand, trace silt and brick fragments, dry, loose, no odor o stains Medium brown fine sand and very small brick fragments, trace gravel, dry, loose, no odo
	В-3В	Soil	or stains
B-6	B-6A	Soil	Medium brown fine sand, some silt, trace gravel, dry, loose, no odor or stains
	B-6B	Soil	Medium brown fine sand, some silt, trace gravel, dry, loose, no odor or stains
B-8	B-8A	Asphalt	Dark brown, medium to fine sand, some silt, dry, loose, no odor or stains
	B-8B	Asphalt	Dark brown, medium to fine sand, some silt, dry, loose, no odor or stains
B-9	B-9A B-9B	Asphalt Asphalt	Dark brown, coarse to medium sand, trace gravel and silt, dry, loose, no odor or stains Dark brown medium sand, trace gravel and silt, moist, loose, no odor or stains
B-10	B-10A	Soil	Dark brown medium to fine sand, trace silt and organics, moist, loose, no odor or stains
	B-10B	Soil	Dark brown medium to fine sand, trace silt and organics, moist, loose, no odor or stains
B-11	B-11A	Soil	Dark brown medium to fine sand, trace silt, gravel and organics, moist, loose, no odor or stains Medium brown medium to fine sand, trace silt, gravel and organics, dry, loose, no odor o
	B-11B	Soil	stains
B-14	B-14A	Soil	Medium brown medium to fine sand, trace silt and gravel, moist, loose, no odor or stains
	B-14B	Soil	Medium brown medium to fine sand, trace silt and gravel, moist, loose, no odor or stains
B-16	B-16A	Concrete	Medium brown coarse to medium sand and gravel, moist, loose, no odor or stains
	B-16B	Concrete	Medium brown coarse to medium sand and gravel, moist, loose, no odor or stains
B-18	B-18A	Concrete	Dark brown medium sand, some silt, trace gravel, moist, loose, no odor or stains
DI	B-18B	Concrete	Medium brown medium sand, some gravel, trace fine sand, moist, loose, no odor or stain
В	F-1	Soil	Dark brown medium to fine sand, trace very small building materials, dry, loose, no odor
В	?- 2	Soil	Dark brown medium to fine sand, trace very small building materials, moist, loose, no odor or stains
IM	S-1	Concrete	Medium brown silt and fine to medium sand, trace gravel and brick pieces, moist, dense, no odor or stains
IM	S-2	Concrete	Medium to orange brown silt and fine sand, trace gravel, moist, dense, no odor or stains

ATO DOST-ADIT 2003

SUMMARY OF SOIL ANALYTICAL DATA METALS

Crane Co.
Pinevale, Goodwin and Moxon Streets
Springfield (Indian Orchard), Massachusetts
RTN 1-0170
NON-WE-05-3A070

Sampling Date: 27 August 2003

Compound	Unit	B-2	B-3	B-6		B-9	B-10	Composite of	D 11 D 11						
		6-12" bgs	6-12" bgs 6-12" bgs 6-12" bgs	6-12" bgs	6-12" bgs	6-1	6-12" has	V	D-14	B-16	B-18	BF-1	BF-2	IMS-1	IMS-2
Metals						F			0-14 098	saq .71-0	6-12" bgs	6-12" bgs	6-12" bgs	6-12" bgs	6-12" bgs
	-									•					
Antimony	mg/kg	SD (48.12)	ND (<8.42)	ND (<8.31)	ND (<8.39)	ND (<8.22)	ND (<8,32)	ND (<8.37)	ND (<8.12) ND (<8.42) ND (<8.31) ND (<8.39) ND (<8.32) ND (<8.32) ND (<8.33) ND (<8.37) ND (<8.37) ND (<8.37) ND (<8.38)	11.8%	(a) (b) (b)	į			
Arsenic	mg/kg	ND (<10.1)	ND (<10.1) ND (<10.5) ND (<10.4) ND (<10.5)	ND (<10.4)	10000 EN	(01 /) CIR	, ;		(+C'ax) 7::	(11.6/) (181	ND (<8.38)	(6.01>) CN	14.2	ND (<8.79)	ND (<8.79) ND (<9.16)
T, in it			, ,	(a.m.)	((()))		7.81	ND (<10.5)	ND (<10.5) ND (<10.7) ND (<10.1) ND (<10.5) ND (<10.9)	ND (<10.1)	ND (<10.5)	ND (<10.9)	1.6	3127 W 3127 W	VE // 115
Danum	mg/Kg		ND (<101) 167 ND (<104) ND (<105) ND (<103)	ND (<104)	ND (<105)	ND (<103)	144	195	ND (<107)	3012) CIV (1012) CIV (4012) CIV	3017		?	(0.11/2) (2.1	(CHIS) ON
Beryllium	mg/kg		ND (<0.63) ND (<0.66) ND (<0.65) ND (<0.66)	ND (<0.65)	ND (<0.66)	ND (<0,64)	160	ND (<0.55)	£ 50 £			2 Z	SZ	(6115)	ND (<115)
Cadmium	mg/kg		ND (<1.01) ND (<1.05) ND (<1.04)	ND (<1.04)	4 37	VE (2) CM	, ,	(10,0)	(20.65) IND (20.65) IND (20.65)	ND (<0.63)		ND (<0.68)	ND (<0.70)	ND (<0.70) ND (<0.69) ND (<0.72)	ND (<0.72)
Promise and				N		(60.15)	4.34	5.04	ND (<1.07)	ND (<1.07) ND (<1.01) ND (<1.08)	ND (<1.05)	1.12	3.48	ND (<1.10) ND (<1.15)	ND 6115
Caroman	mgykg		ND (<20.3) ND (<21.0) ND (<20.8)	ND (<20.8)	23.7	ND (<20.6)	76.3	6.64	ND (<21.4)	ND (<20.3)	(9 000)	(a) 153 CIV		ND(<21.4) ND(<20.3) ND(<20.0) ND(<21.0) ND(<21.0)	(curs) and
Copper	mg/kg	ND (<102)	ND (<102) ND (<105)	267	195	ND (<103)	12000	595	(FOT.) CEN		(2007)	(6.147) ON	(C77) (N	ND (<222.0)	ND (<22.9)
Lead	merka	7.41	38.8	* 00	,			2	(101×) GN	ND (<101) ND (<101) ND (<102)	ND (<105)	708	14100	(S115) (S115) (S115)	SD (<115)
1	9v Sm	ř	0.00	4.88.	40.4 4.0	12.1	1370	641	11.4	3.65	103	67.6	803		, .
Метсипу	mg/kg	0.012	0.049	0.065	0.055	0.015	0.316	1.3	0.018	9000	0.042	9800	3 6	n i	δ. t. α
Nickel	mg/kg	ND (<16.2)	ND (<16.2) ND (<16.8) ND (<16.6)	ND (<16.6)	21.5	ND (<16.4)	Ξ	7 08	110000			60.0	0.063	0.71	0.01
Selenium	ms/ka	MD(<101)	NT (<18.4)			() () () () () () () () () ()		±.	17D (~16.2) ND (~16.3)	1 (2.01.2)	(<.6.5)	21.4	33.7	ND (<17.6)	ND (<18.3)
	0	(TOTAL) ALL	(+:01/) (TAT	(ti)// (s)	(5.012) UN	ND (<10.3)	ND (<13.0)	NO (<10.5)	10 (101) ND (1014) ND (1015) ND (1015) ND (1016) ND (1016) ND (1016) ND (1017) ND (1017) ND (1017) ND (1018)	(<10.1) N	4D (<10.5)	ND (<10.9)	ND Cle 8)	ND (<16.9)	A 11.20 CIN
Silver	mg/kg	ND (<1.01)	ND (<1.01) ND (<1.05) ND (<1.04)	ND (<1.04)	13.2	2.11	3.65	1.25	ND (<1.07) ND (<1.01)	(D(<1.01)) (00 LX) (IN			
Thallium	mg/kg	ND (<6.50)	ND (<6.50) ND (<6.74) ND (<6.65) ND (<6.71)	ND (<6.65)	ND (<6.71)	ND (<6.58)	ND (<6,65)	ND (<6.69)	(20.17) (21) (22) (21) (22) (21) (23) (24) (25) (24) (25) (25) (25) (25) (25) (25) (25) (25	((0) 9/2) (III			4.37	ND (<1.10) ND (<1.15)	ND (<1.15)
Zinc	me/ke	ND (<102)	125	133	20.	(2017) (114	, ;		(CONT.)	1 (64:00)	100.00		(66.8>) UN	ND (<8.99) ND (<7.03) ND (<7.33)	ND (<7.33)
	_				£57	(cu1/) GN	100	63.2	ND (<107) ND (<101) ND (<105)	(101≥) Q	Ð (<105)	375	6320	(01∑)QN	(S115) CN

NOTES: ND - Non Detect

mg/kg - milligrams per kilogram (parts per million)

bgs - below ground surface Laboratory method detection limits given in paranthesis. Samples analyzed for 13 Priority Pollutant Metals.

TABLE 3

SOIL VAPOR POINT DATA

Springfield (Indian Orchard), Massachusetts Pinevale, Goodwin and Moxon Streets NON-WE-03-3A070 RTN 1-0170 Crane Co.

77.7.	;				
Sou Vapor Point ID	Sampling Dates	Location	Depth bgs	Ground Surface PID Response	PID Response
1 1 10	00/02/0			ATACCI IAI	(mdd)
1- A C	9/12/03	North of former monitoring well MW-8	12 inches	Aenholt	0.1.4
C117.7	00/00/0			Tronder	4.1.4
7- A C	6/77/03	Northwest of former monitoring well MW-8	12 inches	A cuhalt	ç
C11.2	70,01,0			1 pordey	7.7
C- ^ C	2/17/03	North of former monitoring well MW-27	12 inches	Concrete	0 00
517.4	0/11/02			2010100	6.07
†	CO/71/6	Inorthwest of former monitoring well MW-27	12 inches	Concrete	781
SV-5	8/22/03	North-northwest of former monitoring months of			t.03
, ,		17. MINI HOM SITTINITION TO 15. MINISTER TO 15.	I 7 inches	Concrete	2
9-AS	9/12/03	East of former monitoring well MW-8	12 inches	A can bolt	
			CATANTT 11		_

NOTES:

PID - Photoionization Detector

PID responses off of the soil vapor samples were collected using a ThermoEnvironmental 580B Photoionization Detector.

ppm - Parts Per Million ND - Not Detected (less than 1.0 ppm)

bgs - Below Ground Surface

TABLE 4
SUMMARY OF SOIL VAPOR ANALYTICAL DATA

Crane Co.
Pinevale, Goodwin and Moxon Streets
Springfield (Indian Orchard), Massachusetts
RTN 1-0170
NON-WE-03-3A070

Sampling Date: 12 September 2003

APH Compounds	Unit		Soil Va	por Points	
	- Cant	SV-1	SV-3	SV-4	SV-6
1,3 Butadiene	ug/m³	<2.0	<2.0	. <2.0	<2.0
Methyl-tert-butyl ether (MTBE)	ug/m³	<2.0	<2.0	<2.0	<2.0
Benzene	ug/m³	<2.0	5	<2.0	<2.0
Toluene	ug/m³	87	109	7	6
Ethylbenzene	ug/m³	3	<2.0	<2.0	<2.0
m/p-Xylenes	ug/m³	11	1	<2.0	6
o-Xylene	ug/m³	3	<2.0	<2.0	<2.0
Vaphthalene	ug/m³	<14.0	<14.0	<14.0	<14.0
-Methylnaphthalene	ug/m³	<15.0	<15.0	<15.0	<15.0
25-C8 Aliphatic Hydrocarbons	ug/m³	962	543	594	406
9-C12 Aliphatic Hydrocarbons	ug/m³	<90.0	<90.0	<90.0	<90.0
9-C10 Aromatic Hydrocarbons	ug/m³	<76.0	<76.0	<76.0	<76.0

NOTE:

APH - Air-Phase Petroleum Hydrocarbons

ND - Not Detected

ug/m³ - micrograms per cubic meter

ATC POST-AUDIT 2003

TABLE 4A

SUMMARY OF SOIL VAPOR ANALYTICAL DATA

Crane Co.
Pinevale, Goodwin and Moxon Streets
Springfield (Indian Orchard), Massachusetts
RTN 1-0170
NON-WE-03-3A070

Sampling Date: 12 September 2003

APH Compounds	Unit		Soil Vaj	oor Points	
	Ulli	SV-1	SV-3	SV-4	SV-6
1,3 Butadiene	PPBv	<1.0	<1.0	<1.0	<1.0
Methyl-tert-butyl ether (MTBE)	PPBv	<0.5	<0.5	<0.5	<0.5
Benzene	PPBv	<0.5	2	<0.5	<0.5
Toluene	PPBv	23	29	2	2
Ethylbenzene	PPBv	I	<0.5	<0.5	<0;5
m/p-Xylenes	PPBv	3	6	<0.5	1
o-Xylenes	PPBv	1	<0.5	<0.5	<0.5
Naphthalene	PPBv	<2.6	<2.6	<2.6	<2.6
2-Methylnaphthalene	PPBv	<2.6	<2.6	<2.6	<2.6
C5-C8 Aliphatic Hydrocarbons	PPBv	NR	NR	NR	NR
C9-C12 Aliphatic Hydrocarbons	PPBv	NR	NR	NR	NR
29-C10 Aromatic Hydrocarbons	PPBv	NR	NR	NR	NR

NOTE:

APH - Air-Phase Petroleum Hydrocarbons

ND - Not Detected

NR - Not Reported

PPBv - Parts per billion per volume

ATC POST-AUDIT 200

SUMMARY OF SOIL ANALYTICAL DATA EPH AND VPH COMPOUNDS

Crane Co.
Pinevale, Goodwin and Moxon Streets
Springfield (Indian Orchard), Massachusetts
RTN 1-0170
NON-WE-03-3A070

Sampling Date: 11 September 2003

Compound	Unit	Soil S	amples
	Oint	S-1	S-2
EPH Compounds			
C9-C18 Aliphatics	mg/kg	ND (<21.1)	NID (-01-2)
C19-C36 Aliphatics	mg/kg	ND (<21.1)	ND (<21.3)
C11-C22 Aromatics	mg/kg	27.7	ND (<21.3) 112
Acenaphthene	mg/kg	ND (<0.5)	1.4
Acenaphthylene	mg/kg	ND (<0.5)	ND (<0.5)
Anthracene	mg/kg	ND (<0.5)	2.4
Benzo(a)anthracene	mg/kg	1.1	7
Benzo(a)pyrene	mg/kg	0.8	4.4
Benzo(b)fluoranthene	mg/kg	1.7	8.6
Benzo(g,h,I)perylene	mg/kg	ND (<0.5)	2
Benzo(k)fluoranthene	mg/kg	0.6	1.8
Chrysene	mg/kg	1.1	4.7
Dibenzo(a,h)anthracene	mg/kg	ND (<0.5)	0.9
Fluoranthene	mg/kg	1.8	14.1
Fluorene	mg/kg	ND (<0.5)	0.7
Ideno(1,2,3-cd)pyrene	mg/kg	ND (<0.5)	3.6
2-Methylnaphthalene	mg/kg	ND (<0.5)	ND (<0.5)
Naphthalene	mg/kg	ND (<0,5)	ND (<0.5)
Phenanthrene	mg/kg	0.7	11.9
Pyrene	mg/kg	1.6	11
VPH Compounds			
C5-C8 Aliphatics	mg/kg	ND (<18.5)	ND (<18.7)
C9-C12 Aliphatics	mg/kg	ND (<18.5)	ND (<18.7)
C9-C10 Aromatics	mg/kg	ND (<18.5)	ND (<18.7)
Berizene	mg/kg	ND (<0.16)	ND (<0.16)
Ethylbenzene	mg/kg	ND (<0.16)	ND (<0.16)
MTBE	mg/kg	ND (<0.16)	ND (<0.16)
Naphthalene	mg/kg	ND (<0.10)	ND (<0.16) ND (<0.533)
Coluene	mg/kg	ND (<0.16)	ND (<0.16)
n/p-Xylene	mg/kg	ND (<0.32)	ND (<0.16) ND (<0.32)
-Xylene	mg/kg	ND (<0.16)	ND (<0.32) ND (<0.16)

NOTES

EPH - Extractable Petroleum Hydrocarbons

VPH -Volatile Petroleum Hydrocarbons

ND - Non Detect

mg/kg - milligrams per kilogram (parts per million)

Laboratory method detection limits given in paranthesis.

TABLE 6

SUMMARY OF SOIL ANALYTICAL DATA PAH COMPOUNDS

Crane Co.
Pinevale, Goodwin and Moxon Streets
Springfield (Indian Orchard), Massachusetts
RTN 1-0170
NON-WE-03-3A070

Sampling Date: 11 September 2003

PAH Compounds	Unit	Soil San	ıples
	Oint	S-1	S-2
Acenaphthene	mg/kg	ND (<0.18)	1.46
Acenaphthylene	mg/kg	ND (<0.18)	0.19
Anthracene	mg/kg	0.33	2.06
Benzo(a)anthracene	mg/kg	1.35	6.90
Benzo(a)pyrene	mg/kg	1.28	6.08
Benzo(b)fluoranthene	mg/kg	1.72	6.44
Benzo(g,h,I)perylene	mg/kg	0.82	2.99
Benzo(k)fluoranthene	mg/kg	0.64	4.87
Chrysene	mg/kg	1.65	7.79
Dibenzo(a,h)anthracene	mg/kg	0.28	1.10
Fluoranthene	mg/kg	2.22	11.1
Fluorene	mg/kg	ND (<0.18)	1.16
deno(1,2,3-cd)pyrene	mg/kg	0.89	3.68
-Methylnaphthalene	mg/kg	ND (<0.18)	0.36
Naphthalene	mg/kg	ND (<0.18)	1.04
henanthrene	mg/kg	1.37	9.11
Pyrene	mg/kg	2.14	11.1

NOTES:

PAH - Polynuclear Aromatic Hydrocarbons

ND - Non Detect

mg/kg - milligrams per kilogram (parts per million)

Laboratory method detection limits given in paranthesis.

TABLE 2-2
ANALYTICAL TEST RESULTS FOR SOILS

Boring/Monit Well No.	Sample No.	Depth	<u>Area</u>	Petroleum (Mg/g) Hydrocarbons	PCB' (mg/k
MW-1	S-1	0.5'-2'	Railroad	420	
MW-2	S-1	0.5-2	Railroad	430	<80
MW-2	S-2	3'-4'	Railroad	399	
MW-3	s-1	1'-2.5'	Yard	352	
MW-3	S-3	10'-11.5'		354	<160
MW-3	S-4	15'-16.5'	Yard Yard	304	
MW-4	5-313	10'-11.5'		400	
MW-4	S-4	15'-16.5'	Tank 1-4	420	
MW-5	S-3	10'-11.5'	Tank 1-4	4570	<80
MW-5	S-4	15'-16.5'	Tank 1-4	4396	
MW-6	S-3	10'-11.5'	Tank 1-4	257	
MW-6	S-4	15'-16.5'	Tank 1-4	343	
MW-7	S-1	0'-1.5'	Tank 1-4	276	
MW-7	S-2	5'-6.5'	Yard	1751	<80
MW-8	S-1	1'-2'	Yard	394	<80
MW-9	S-1		Railroad	1771	<800
MW-10	S-1	0.5'-1.5'	Railroad	1460	<80
MW-11		0.5'~1.5'	Railroad	728	
MW-12	S-1	0.5'-2'	Railroad	345	
MW-13	S-1	0.5'-1.5'	Railroad	1194	<80
MW-14	S-1	0.5-1.5'	Railroad	358	
MW-15	S-1	0.5-1.5'	Railroad	309	
MW-16	S-3	10'-11.5'	Tank 10-11	263	
	s-3	10'-11.5'	Tank 10-11	284	
MW-17	s-l	0.5'-1.5'	Railroad	1762	
MW-18	s-1	0.5'-1.5'	Railroad	430	<80
MW-19	S-1	0.5'-1.5'	Railroad	325	100
MW19	S-2	5'-6.5'	Railroad	244	
MW-21	S-1	0.5'-1.5'	Landfill	<u> </u>	_
MW-21	s-2	5'-6.5'	Landfill	240	<200
MW-21	s−5	20'-21.5'	Landfill		<80
MW-22	S-1	0'-2'	Landfill	231	<80
MW-22	S-5	20'-21.5'	Landfill		<300
MW-23		0'-2'	Landfill	505	<80
MW-24	S-1	0'-2'	Landfill	5.55	<80
MW-24	S-2	5'-6.5'	Landfill	254	<80
MW-25		0'-2'	Landfill	306	<80
A-1	base of pit		Tank 1-4	39400	\00
A-2	pit sidewall	,	Tank 1-4	1250	
ā	above water tabl			1230	
A-3	base of pit		Tank 1-4	12500	
	at water table		rank 1 4	12500	
A-4	base of pit		Tank 1-4	1650	
	at water table		TOTIK T 4	1050	
A-5	base of pit		Tank 1-4	1000	
	below water tal	פור	TOUR 1-4	1800	
A-6	base of tank #3		manle 10 11	13000	
A-7	base of tank #		Tank 10-11	11300	
	soil below base	·	Tank 10-11	8670	
	PCTCM DCDG	UL .	Tank 10-11	2210	

2 - 4

TABLE 2-3 ANALYTICAL TEST RESULTS FOR WATER

Monitor Well	Ground Water Sample Depth	Area	Water Level (ft below ground surface)	Petroleum <u>Hydrocarbons (mq/l)</u>	PCB's (ug/1)
MW-1	7'-15'	Railroad	7.18'	6	,
2	8'-15'	Railroad	7.73'	24	<10
. 3	8.5'-15'	Yard	8.55'		
4	8.5-15'	Tank 1-4	8.56'	10	<10
4 (oil phase	9.5'-15'	Tank 1-4		178	<0.5
5	8.5'-15'	Tank 1-4	***	**	<5,000
6	8.83'-15'	Tank 1-4	· ·	16	
. 7	9.6'-15'	Yard 8	9.60'	. 3	
8	10'-15'	Railroad	10.10'	_	
9	10'-20'	Railroad	10.51	8	<10
10	15'-20'	Railroad	•	10	<10
11 .	16.7'-25	Railroad	12.66'	8	<10
12	16.5'-20'	Railroad	14.16'	6	<10
13	15'	Railroad	14.43	3	<10
14	17.5'-20'	Railroad	13.08'	5	<10
1.5	131	Tank 10-11	15.16'	4	
16	12'	Tank 10-11	10.66	4 .	o r
17	9.5'-15'	Railroad	11.54	3	
18	8.8'-15'	Railroad	9.44'	4	
19	9.3'-15'	Railroad	8.82'	2	<10
20	15.7'-20'	Railroad	9.35'	3	•
21	23'-30'	Landfill	15.7'-s.u.	3	
22	26'-30'	Landfill	22.98'-s.v.	3	<0.5
23	23'-30'		23.79'	4	<0.5
24	14'-20'	Landfill	20.72'	3	
25	16'-20'	Landfill	14.35'-s.u.	2	
	10 20	Landfill	16.35'-s.u.	1	
Surface Water					
Fank 1-4 Area			•		
W-1				·	
			15	<2.0	<50

នប Ta

Surface Water Tank 1-4 Area W-1

Q

	Volatile Organic Compounds (ppb)	4.0 1,1-Dichloroethane, 16.0 1,1,1-	Trichlororoethane	2 9 1 1=04ch1cmc.tt	2.0 1,1 Dichloroethane, 6.5 Renzene					4.0 l.l.l-Trichlorcethine		QN			ND					6.0 l,l-Dichloroethane,	8.9 l,l,l Trichloroethane		ND	QN	, QN .			
	ground surface)	7.18	7.73	8,55	8.56] [9.60	10.10*	10.51'	12.66	14.16'	14.43'	13.08	15.16'	10.66	11.54'	9.44'	8.82'		9.35'	15.7'-s.u.	22.98'-S.U.	23.79'	20.72	14.35'-8.0.	16.35'-S.U.
	Area	Railroad	Railroad	Yard	Tank 1-4	י למנת		, ,,,,,	Yard 8	Railroad	Railroad	Railroad	Railroad	Railroad	Railroad	Railroad	Tank 10-11	Tank 10-11	Railroad	Railroad		Railroad	Railroad	Landfill	Landfill	Landfill	Landfill	Landfill
Ground Water	under etdinge	7'-15'	8'-15'	8.5'-15'	8.5-15'	8.51-151	8.5'-15'	8.83'-15'	9.6'-15'	10'-15'	10'-20'	15'-20'	•	16.5'-20'	15'	17.5'-20'	13'	12'	9.5'-15'	8.8'-15'	1	9.3'-15'	15.7'-20'	_ ;	26,-30,	23'-30'	14'-20'	16'-20'
Monitor Well		MW-1	2		4	4 (oil phase)	5	9	7	∞ .	δ ,	O ;		12	13	14	15	16	17	18	Ç	67	20	21	22	23	24	2.5

TABLE 1 Summary of Extractable Petroleum Hydrocarbon (EPH) Soil Laboratory Data Former Machine Shop - Building 10

Former Chapman Valve / Crane Compuny Pinevale, Goodwin and Moxon Streets Springfield, Massachusetts 01115

All results reported in mg/kg

Petersoholife Between II.	June Property House		-	Ľ			-																
WALLER L. E.	roteum Ay	Gracarbans		1	EPH Fractions	000	_							1									
		_	1											DATA Larget Analytes	Anatyres								
			P.ID/ PetroFlag							_												L	
,			Screening	ن ن	, C., C.	CILCE		2-Methy		_						 ;				Ā	Indeno Dil	ibenzo E	Benzo
Sample ID	Date	Depth (ft)	(ppm)	Aliphanes	Aliphatic	Aromatic	SNaphthalene	naphthalene	Aliphatics Aliphatics Aromatics Naphthalene naphthalene Acenaphthylene Acenaphthene	Acenaphthene	Finorene	Phenanthrene	*	Parethanne	,	_				Benzo (a) (1,2,	(1,2,3-cd) ((a,t)	(g,h,i)
TPB-11 0-2	12/12/06	0-5.	NA	<31.3	63.6	G13	<0.156	×0.15K	20100	Jat no			A LINE ACCING	Truck attribute	ryrene	antintacene	Chrysene m	Ruoranthene flu	fluoranthene pyr	pyrene pyr	pyrene anth	anthracene pe	perylene
TPB-13A 0-2'	12/12/06	6-3	ΔN	210	7	1		3	00.00	00 P	40.156	0.364	<0.156	0,834	0,789	0.356	0.452	0.327	0.436 0.4	0.464 03	0311	351.05	0 347
TPB-14 0-2' *	12/32/06	L	72	3	5	0.15	/C1.07) (2,10)	<0.157	<0.157	<0.157	0.347	<0.157	1.53	1.550	0.864	0.847	0.845	0.78	┞	╀	+	8780
TPR-19R 0.21 *	느	L	12		7		0.432	05E-05	0.797	<0.350	0.513	27,300	5,660	27.500	23.700	The Republican	7,440	5.490		100	╁	╀	000
TOP 16 A O O	٠.,	1	V _N	7	CHA	0.58	0.53	Ø.413	0.737	<0,413	<0.413	12,500	3.550	22.500	20.100		6.630	3 80	4.71		+	Ŧ	000
7-0 VC1-0-1	32/12/06	7.7	NA	41.1	121	72.6	<0.205	<0.205	<0.205	<0.205	<0.205	0.508	20.00	1 040		STATISTICS CANCELLED	2000	700			+	0.584	4.83
TPB-16 0-2'*	12/12/06	.7-0	NA	<40.3	253	<202	0.15	d 12	0.17	2,050	1 800	0000	0.200	1.040	DYO'S	0.303	0.539	0,252	0,494 0.4	0.467 0,2	0,267 <0	<0.205 0	0.328
PE-1 1' **	6/25/07	_	175	960	200	86.0	3890	621.0	100.0	4,000	1.000	74.800	6,450	41.200	35300	100	17,300		13,80				08.01
PE-2 1' **	6/25/07	-	OVER TRAIGE	ç	02	445	7	2070	160.0	0.393	C/J'O	10,200	2,020	14,500	12,500	6.520	6.200	050.9	5.46	3,6	3.680	0.529	4 300
PE-3 1'	2015019	-	-	100	6			7,4/10	<4.47U	1.716	1.720	32.000	7.010	62.300	56.700	1000	24.30	len to this	22.60				00.00
DE-4 7*	CHTION		, ,	707	787	90.4	<0.141	<0.14!	<0.141	0.141	<0.141	0.221	<0.141	0.821	0.787	0.402	0.381	0.516		0.07		191 05	0.210
1	10/770		1159	8/7>	\$7.7	9.68	0.169	<0.138	0.141	0,295	0,252	4.200	0,928	9.510	8.730	5.36	4 700	4 970	ľ		+	T	777
7 -asec	6/22/07	z	304	<27.4	138	30.8	<0,137	<0.137	<0,137	<0,137	<0.137	1,280	0.349	2.070	1 930	0.877	\$60.0	200			╬	1	3.250
pase-7.7	6/25/07	7	0	<26.9	<26.9	<26.9	40,134	<0.134	<0,134	<0.134	<0.134	40 134	×0 134	1150	0000	+	╀	è	+	+	+	╁	0.873
PE-2A 1-2	10/3/07	1-2,	NA	€96,0	<36.0	036.0	<0.179	07.105	0.250	021.07	100	0220		1150	6070	G. 130	+	40.134 40.134	0.140	0,160	9 134	₹ 9.134	40.134
PE-1A 1-2	10/3/07	1.7.	ΑN	090	\$ T	9,50	0,0	100	0000	4.175	<0,179	2.330	1,130	12,200	11.500	4.090	3.620	2.450	3,860 1.5	1.520 3.1	3.150 0.	0.499	3,830
×	offind 1 ST#	Method 1 ST /CW2 Standard	ı	000	300		V.233	# (F. 1.7)	0.292	<0.134	<0.134	0.711	0.323	2.040	1,850	0.834	1,110	1.050	1.410 0.7	0.779	H	<0.137 2	2.760
×	afbod 1 C1 //	Mathod 1 C1/CV8/2 Standard	2	000	3,000	7,000	3	8	900	1,000	1,000	300	1,000	1,090	1,000	7	70	7	70	2	-	┝	700
YII	1	O 112 Statute		1,000	3,000	1,000	200	300	10	1,000	1,000	500	1,000	1,000	1,000	7	D/	7		H			90
																			$\ $,	200

Notes:

Method I Soil Standard S-1 is the applicable standard to avoid implementation of an Activity and Use Limitation.

Method I Soil Standard S-1 is the applicable standard to avoid implementation of an Activity and Use Limitation.

There value inclusions exceedance of SLGW2 standard.

* = Soil was exervated in June 2007.

* = Soil was exervated in June 2007.

* = Soil was exervated in March 2008.

MCP = Massachabe Petroleom Hydrosurbons.

MCP = Massachabe Petroleom Hydrosurbons.

PID = photoionization detector.

ppm = parts per million.

 $mgKg = milligram \ per kilogram (equivalent to parts per million).$ NA = Not analyzed. NA = Not available.

Summary of Polychlorinated Biphenyls (PCBs) Soil Laboratory Data Former Machine Shop - Building 10 Former Chapman Valve / Crane Company Pinevale, Goodwin and Moxon Streets Springfield, Massachusetts 01115

All results reported in mg/kg

Sample ID	Date	Depth (ft)	PCB - 1016	PCB - 1221	PCB - 1232	PCB - 1242	PCB - 1248	PCB - 1254	16 PCB - 1221 PCB - 1232 PCB - 1242 PCB - 1248 PCB - 1254 PCB - 1260	PCR - 1767 PCR - 1768	PCB - 1768
TPB-11 0-2'	12/12/06	0-2,	<0.0271	<0.0271	<0.0271	<0.0271	<0.071	12000>	1200 02	12000	20 00 T T T T T T T T T T T T T T T T T
TPB-13A 0-2'	12/12/06	0-2	<0.0276	<0.0276	9220 0>	37.00 0>	75000	750.0	7770.0	0.0271	<0.02/1
TPR-140-71 *	70/61/61	100	0000			0.770.0	0/70.0	0/70.0	<0.02/0	9/70.0>	<0.0276
7017	12/12/00	7-0	<0.0280	<0.0280	<0.0280	<0.0280	<0.0280	<0.0280	<0.0280	<0.0200 0>	<0.0780
TPB-12B 0-2' *	12/12/06	0-2	<0.0322	<0.0322	<0.0322	<0.0322	<0.0322	~0.0222	2000	0000	00.20.0
TPB 15 A A 21	70/01/01	100				2	77700	77.0.0	77CO:0	<0.0522	<0.0522
7-0 4/1-011	12/12/00	7 - 0	<0.0285	<0.0285	<0.0285	<0.0285	<0.0285	<0.0285	<0.00 0>	>8000>	20000
TPB-16 0-2' *	12/12/06	0-2	<0.0303	<0.0303	<0.0303	<0.0303	<0.0303	0.29	0.159	<0.0203	0.0203
Mathod	Mathod 1 S1/CW2 Standard	ndowd	,	ļ					22.5	COCOCO	COCO.O
DOMANA	A DEL GIVE DEA,	naara	7	7	2	7	7	7	2	~	,
Method	Method 1 S1/GW3 Standard	ndard	2	2	2	7	2	2	2	2	2
											•

Notes:

Method I Soil Standard S-1 is the applicable standard to avoid implementation of an Activity and Use Limitation.

Italic value indicates exceedance of S1/GW2 standard.

Shaded value indicates exceedance of S1/GW3 standard.

* = Soil was excavated in June 2007.

MCP = Massachusetts Contingency Plan 310 CMR 40.0000.

"<" = less than the laboratory reporting limit.

NA = Not applicable.

mg/kg = miligrams per kilogram (equivalent to parts per million).

Summary of Coal Ash Soil Laboratory Data
Former Machine Shop - Building 10
Former Chapman Valve / Crane Company
Pinevale, Goodwin and Moxon Streets
Springfield, Massachusetts 01115

				Exe	Exempt		Non-L	Non-Frommt	Meson	
Sample ID	Date	Denth (ft)	Coal	Coal Ash		, , ,	THOUT	ndmay	Miscell	Miscellaneous
11 0 O	70101101	(ar) madaa			Coat Flyash	Wood Ash	Tar	Oil Soot	Asphalt	Mineral
1FD-11 0-2	17/17/00	0-2					X			
TPB-12B 0-2' *	12/12/06	0-2,					4		\	
TPB-13A 0-2'	12/12/06	0-2,							<	
TPB-14 0-2' *	12/12/06	0-2,	×						7 %	X
TPB-15A 0-2'	12/12/06	0-2'	×	×					X	
TPB-16 0-2' *	12/12/06	0-2,		×			Þ		7	
PE-2 1' *	20/5/09	1	Þ	•		Ļ	⟨ ;		<	
;	10 (07)0	Ţ	4	<		X	X			
PE-4 l' *	6/27/07	1	×			X	×			
PE-1A 1-2'	10/3/07	1-2'	×							
PE-1B 1-2'	10/3/07	1-2		×		×				
PE-2A 1-2'	20/8/01	1-2'	×			×				
PE-2B 1.2'	10/2/01	1-2,	×			X-I ead				
PE-4A 1'	10/3/07	1'	×			X				

Notes:

* =Soil was excavated in June 2007.

X = Detected.

WSF RAM STATUS 2007

O'REILLY, TALBOT & OKUN ASSOCIATES, INC. ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-15

Page 1 OF 2

	ane Manufacturin	g				LOCATION:	Cadaadald MA	Table 10 Table 10	
DRILLING CO				FOREMA	AN Rob	DATE STARTED	Springfield, MA	PROJECT NO.: 0	076-22-04
Seaboard	Environmental Dri	lling		HELPER	Ronnie	09/22/09		DATE FINISHED 09/22/2009	
DRILLING EQU						COMPLETION DEPTH		GROUND SURFAC	NE COLEN
YPE BIT	m Auger Rig					34.5'		DATUM	JE ELEV.
CASING	Hollow Sten	n Auger	SIZE	&TYPE OF	CORE BARREL	No. Samples	8	DATON	UNDIST.
ASING HAMI	·/	1 1051015	┸			TIME		FIRST	COMPL. HR.
SAMPLER: 2"	O.D. Split Spoon	WEIGHT	" ^ -		DROP	WATER LEVEL (FT.)		10'	CONTE. PIK.
AMPLER	Safety	Rod A 1 5/8 WEIGHT	" U.U.	I BBOB		BORING	North end of former	iron foundry	<u> </u>
IAMMER	Caloty	140 lbs.		DROP 30" (Wire	Line	LOCATION		•	
			AMPL	-S	· Lille)	ENGINEER/GEOLOGIST	Brin Thompson		
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC.		DESCRIPTIO	DN .	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
*		1	1		8": CONCRETE				
		1		1	O . GONGKETE			CONCRETE	
		10/14/13/16	6/24	S-1 (1'-3')	Medium dense, brown, medium to coa sub-angular fine gravel, trace fine sand	irse SAND, little d, trace silt, dry	0.0	FILL	
	5	5/4/4/6	13/24	S-2 (5'-7')	Loose, black, fine to medium SAND, lit sand, dry	tle silt, trace coarse	0.0		
	10	7/7/13/14	16/24	S-3 (10'-12')	Top 6": Medium dense, brown, medium trace coarse sand, wet Bottom 10": Medium dense, brown, me trace fine sand, trace silt, wet		0.0	11' Y	
	15	4/4/6/11	15/24	S-4 (15'-17')	Medium dense, brown, coarse SAND, li trace (-) fine sand trace (-) silt, wet	ttle medium sand,	0.0		
	20	6/14/13/11	18/24	S-5 (20'-22')	Medium dense, brown, coarse SAND ar medium sand, trace (-) fine sand, trace (nd fine GRAVEL, trace (-) siit, wet	0.0	SAND AND GRAVEL	
marks:		12/13/20/20 1		(25'-27')	Dense, brown-red, medium to fine SAND sub-angular gravel, little silt, wet nization detector (PID) referenced to ben		0.0	GLACIAL TILL	

O'REILLY, TALBOT & OKUN ASSOCIATES, INC. ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-15

Sheet 2 of 2

Project No. 0076-22-04 SAMPLES PENETR, REC. SAMPLES DEPTH FIELD MEASUREMENTS DESCRIPTION SOIL DESCRIPTION REMARKS RESIST. BL/6IN. FT. IN. NO. GLACIAL TILL 34/40/24/26 22/24 S-7 Very dense, brown-red, medium to fine SAND, some 0.0 (30'-32') fine sub-angular gravel, some silt, wet Very dense, brown-red, fine to medium SAND, some 44/ 2/24 S-8 silt, little weathered rock, dry 0.0 50 for 5" (34'-36') Auger refusal at 34.5' End of exploration at 34.5

O'REILLY, TALBOT & OKUN ASSOCIATES, INC.

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

					LOG OF BORING CM-16			Page	1OF 1	
PROJECT: C	rane Manufacturing	_		······				, 49	·	
DRILLING CO	NTDACTOD	1		leoner :		LOCATION:	Springfield, MA	PROJECT NO.: 0	076-22-04	
Seshoord	Environmental Dri	111		FOREMA		DATE STARTED		DATE FINISHED 09/22/2009		
DRILLING EQ	CHAICHING I(S) DI	ııng		HELPER	Ronnie	09/22/09				
	m Auger Rig					COMPLETION DEPTH		GROUND SURFA	E FLEV	
TYPE BIT	Hollow Sten		Louren	· · · · · · · · · · · · · · · · · · ·		13'		DATUM	o <u></u>	
CASING	TIDIOW Stell	TAuger		&TYPE OF	CORE BARREL	No. Samples	6		UNDIST.	
CASING HAMI	M	WEIGHT	<u> </u>			TIME		FIRST	COMPL. HR.	
SAMPLER: 2"	O.D. Split Spoon	Rod A 1 5/8	W.O.B.		DROP	WATER LEVEL (FT.)		10.5'		
SAMPLER	Safety	WEIGHT	U.D.	DROP		BORING	Northwest corner of	former iron foundry	-t	
HAMMER	Callety	140 lbs.		30" (Wire I	lne)	LOCATION	On pavement			
	T		AMPLE	S	i e e e e e e e e e e e e e e e e e e e	ENGINEER/GEOLOGIS	F Brin Thompson			
SAMPLES	DEPTH	PENETR.	REC.	TYPE/	- Droopings		1			
	FT.	RESIST.	IN.	NO.	DESCRIPTIO	N .	FIELD	SOIL	REMARKS	
	İ	BL/6 IN.	""	"	1		MEASUREMENTS	DESCRIPTION		
-			┪—	 	3": ASPHALT	······	·	<u></u>		
-		i			O ANDI HALI		1	ASPHALT		
$\overline{}$	1 -	11/12/14/13	22/24	S-1	Top 44% Modium dansa harris (FILL		
		1		(1'-3')	Top 14": Medium dense, brown, mediu	m to coarse SAND,	0.0			
		1		(, 0)	Bottom 8": Medium dense, black, fine		1			
· / \		ļ		i	little coal ash, trace silt, dry	o mealum SAND,				
		12/8/4/3	14/24	S-2	Medium dense, black, fine to medium]			
		12.5	1,72	(3'-5')	ash, trace silt, dry	SAND, some coal	0.0	i l		
$^{-}$ \wedge	_	1	1 1	(0-0)	asa, trace sat, dry		•			
	5									
		20/19/17/14	NR	S-3	No Recovery		i			
		}		(5'-7')	No Necovery		-			
_	_	1		(0-1)]					
]	1 1		1					
		16/8/8/10	4/24	S-4	Madisus dans based to					
		10/0/0/10	4724		Medium dense, brown-black, medium t	o coarse SAND,	0.0			
$^{-}$ \times $ $				(7'-9')	little fine sand, trace silt, trace coal ash	, dry	1			
		İ	i l					· i		
		16/17/20/31	10/24	S-5	D					
	10	10/11/20/01	10/24		Dense, brown, medium to fine SAND, a	ome silt, trace	0.0			
- X I			i I	(9'-11')	coarse sand, trace coal ash, dry to wet	at 10.5'				
								10.5' ▼		
()		22/13/20/27	04/04	0.0			i	SAND		
		22/13/20/2/	24/24	S-6	Dense, brown, medium to coarse SANI), little fine gravel,	0.0	[]		
$^{-}$ \times $^{+}$				(11'-13')	trace fine sand, trace silt, wet			}		
										
		İ						♦		
f				i	End of exploration at 13'				-	
- j		1								
f	15									
	—— ' —									
 		Ī								
- ⊦		- 1								
ŀ		ļ	- 1	İ				ŀ		
- F	— —	ł								
ŀ	— I	I								
- ⊦		ļ	- 1			İ			İ	
ŀ		ŀ	- 1							
- ⊦			-	1						
-	20	-	- 1				1			
- F		i	- 1				ŀ		į	
-		l	- 1							
- }-		į	ĺ	•			ļ			
		İ		ļ		!	1	ĺ		
~ -		I	J	j		ĺ		1		
ŀ.	_	1	ĺ					i		
- ⊩		İ		ļ						
 		- 1	J	ı				[
- F		ļ	1							
⊢		[1	1	
- ⊢	25			l				l	1	
<u> </u>		-	1	- 1				į		
• -		1				1	1	l		
<u> </u>			- 1	i			ľ]	

^{1.} Soil headspace screened in field using TEI model 580B photolonization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

O'REILLY, TALBOT & OKUN ASSOCIATES, INC.

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-17 PROJECT: Crane Manufacturing Springfield, MA PROJECT NO.: 0076-22-04 DRILLING CONTRACTOR FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling HELPER Ronnie 09/22/09 09/22/2009 DRILLING EQUIPMENT COMPLETION DEPTH GROUND SURFACE ELEV. Hollow Stem Auger Rig 13 TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples UNDIST CASING FIRST COMPL HR. CASING HAMM WEIGHT DROP WATER LEVEL (FT.) 10' SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D. North end of site on pavement BORING SAMPLER Safety WEIGHT LOCATION near pet supply ENGINEER/GEOLOGIST Brin Thompson near pet supply building HAMMER 140 lbs 30" (Wire Line) SAMPLES DEPTH PENETR. REC. TYPE/ DESCRIPTION FIELD SOIL REMARKS FT, RESIST. IN. MEASUREMENTS DESCRIPTION BL/6 IN. 4": ASPHALT **ASPHALT** 9/13/11/10 6/24 S-1 Medium dense, brown, medium to coarse SAND, little fine 0.0 (1'-3') gravel, trace fine sand, trace silt, dry 4/3/4/5 10/24 S-2 Top 5": Loose, black, fine to medium SAND, some coal 0.0 (3'-5') ash, trace sift, dry Bottom 5*: Loose, brown, fine to medium SAND, little coarse sand, trace silt, dry 8/9/10/12 NR Rock in tip (5'-7') 12/12/14/16 16/24 Medium dense, brown, medium to coarse SAND, little fine SAND AND (7'-9')gravel, trace (-) fine sand, trace (-) silt, dry GRAVE1 21/26/30/32 14/24 S-5 Very dense, brown, coarse SAND, some fine gravel, little 0.0 (9'-11') medium sand, trace fine sand, trace (-) silt, wet 39/36/32/37 8/24 S-6 Very dense, brown, coarse SAND, some gravel, little 0.0 (11'-13') medium sand, trace fine sand, trace (-) silt, wet End of exploration at 13'

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm) 2. Weil at 13' below ground surface, screen 13'-3', solid PVC riser 3' to above ground surface. Sand pack 13'-2', bentonite clay 2'-1', standpipe cemented in place.

O'REILLY, TALBOT & OKUN ASSOCIATES, INC. ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-18

Page	1OF	1
DJECT NO + 0	176-22-0 <i>4</i>	
DJECT NO.: 00 E FINISHED 09/22/2009		
DUND SURFAC UM		
FIRST	UNDIST. COMPL.	705
10'	COMPL.	HR.
lry		
SOIL SCRIPTION	REMA	RKS
ASPHALT		
SAND		

RILLING CO				FOREMA	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO.: 0	076-22-04	
Seaboard I	Environmental Drill	ing		HELPER		09/22/09	DATE FINISHED			
RILLING EQL						COMPLETION DEPTH	09/22/2009 GROUND SUBSAC	ROUND SURFACE ELEV.		
Hollow Ster	m Auger Rig	A	loi			13.5'		DATUM	,⊏ ELEV.	
ASING	Hollow Stem	Auger	4SIZE 8	STYPE OF	CORE BARREL	No. Samples	6	<u> </u>	UNDIST.	
ASING HAMI	Л.	WEIGHT	4		DROP	TIME		FIRST	COMPL.	Н
AMPLER: 2" (O.D. Split Spoon	Rod A 1 5/8	" O.D.		JUNOF	WATER LEVEL (FT.)		10'		
AMPLER	Safety	WEIGHT		DROP		BORING LOCATION	North of former iron	foundry		
AMMER		140 lbs.		30" (Wire	Line)	ENGINEER/GEOLOGIST	Bris Thompson	T		
SAMPLES	DEDTU		AMPLE				Dine Photopadel			
JAWFLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTI	ИС	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	ARKS
ĺ					4": ASPHALT			ASPHALT		•
-					GRAVEL to 2' (Asphalt base)]	FILL		
								l 1 .		
		6/7/10/8	22/24	S-1	Modium donos haven un l'					
		0/1/10/0	22/24	(2'-4')	Medium dense, brown, medium to con	arse SAND, some fine	0.0		i	
				(4-4)	sand, little fine gravel, trace silt, dry				l	
									Į	
\setminus Z		8/7/9/12	13/24	S-2	Medium dense, brown, medium to coa	arse SAND, some fine	0.0		I	
- X I	5			(4'-6')	gravel, trace fine sand, trace silt, dry	or in to, doing line	0.0		i	
							· .		i	
\leftarrow		BIOL-1-		_	1	9				
X > I		5/6/6/9	8/24	S-3	Medium dense, brown, fine to medium	SAND, little silt,	0.0			
\cdot \times \cdot			ļ	(6'-8')	trace coarse sand, trace(-) fine gravel	moist				
		31/45/	10/24	S-4	Ton 2" Very dones brown madium to	04415		i i		
. \ / [50 for 5"	10/2-1	(8'-10')	Top 2": Very dense, brown, medium to fine sand, trace fine gravel, trace silt	coarse SAND, some	0.0	+		
X [(,	Middle 2": CONCRETE			9,		
$\angle XI$			ļ		Bottom 6": Very dense, amber-brown,	modium to seems CAND		SAND		
\leftarrow	10	ı	ſ		little fine gravel, trace (-) fine sand, tra	nedium to coarse SAND, i				
$\setminus \land$		31/40/33/32	18/24	S-5	Very dense, amber-brown, medium to	coarse SAND little	0.0			
\times			- 1	(10'-12')	fine gravel, trace fine sand, trace(-) sill	. wet	0.0			
$/ \setminus$, , , , ,	,				
\leftarrow										
\times		26/	8/24	S-6	Very dense, amber-brown, medium to	coarse SAND, little	0.0			
$^{\circ}$ $^{\circ}$ $^{\circ}$		50 for 5"	- 1	(12'-14')	fine gravel, trace fine sand, trace(-) sill	, wet				
		i	- 1		Refusal at 13.5' End of exploration at 13.5'			_		
					End of exploration at 13.5					
Ī	15	1	- 1							
		ľ								
			ļ					ļ		
L]	- 1	ı			ļ	l	ŀ		
ļ.						İ	i			
- ⊢	[- 1					ľ			
-							1	Ì		
		İ	- 1				İ			
		- 1				1		1		
]	[ſ		ļ				
	_ 7	1								
		•		1						
<u></u>	_ 7	- 1				İ		1		
ļ		1						İ		
<u> </u>		ĺ		ĺ			ŀ			
<u> </u>]				ļ		l		
<u> </u>	25	- 1		ļ		ĺ	1			
<u> </u>	20		Ī	l				İ		
F		- 1		l						
<u> </u>										
	_			- 1				ŀ		
ırks;			ـــــــــــــــــــــــــــــــــــــ				į.	1		

O'REILLY, TALBOT & OKUN ASSOCIATES, INC. ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-19

PROJECT: C	rane Manufacturi	ıg.				LOCATION	0 1 0 11 111				
DRILLING CO	NTRACTOR			FOREMA	N. Rob	LOCATION: Springfield, MA PROJECT NO.: 0076-22-04 DATE STARTED DATE FINISHED					
Seaboard DRILLING EQ	Environmental Di	illing		HELPER	Ronnie	09/23/2009	09/23/2009				
	em Auger Rig					COMPLETION DEPTH	GROUND SURF		E ELEV.		
TYPE BIT	Hollow Ste	m Auger	SIZE	&TYPE OF	CORE BARREL	12' No. Samples 5		DATUM			
CASING			1		OTTE DI WITTE	TIME	5	Fiber	UNDIST.		
CASING HAMI	M.	WEIGHT			DROP	WATER LEVEL (FT.)		FIRST 6'	COMPL.	HR.	
SAMPLER: 2"	O.D. Split Spoon Safety	Rod A 1.5/6 WEIGHT	3". O.D.	l Bross		BORING	Southeast corner of			<u> </u>	
HAMMER		140.lbs.		DROP 30" (Wire I	l ine)	LOCATION ENGINEER/GEOLOGIS	near Moxon Street e	ntrance			
		8	SAMPLE	E8		TEMBINEE/OGEOLOGIS	1 Brirt I nompson				
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTIO	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	RKS	
_					2". ASPHALT 2": ASPHALT base 8": CONCRETE			ASPHALT 1'CONCRETE FILL I			
<u>-</u>		14/ 50 for 5"	8/24	S-1 (2'-4')	Very dense, brown, fine to medium SA fine gravel, little concrete, dry		0.1	4' ▼			
	5	17/19/15/14		\$-2 (4'-6')	Dense, brown-red, fine to medium SA fine gravel, moist		0.3	SAND			
		8/8/8/9	18/24	S-3 (6'-8')	Medium dense, brown-red, fine to med little fine gravel, wet	dium SAND, some slit,	0.0		:		
-X	10	6/7/11/14	20/24		Medium dense, brown-red, fine to med little fine gravel, wet	lium SAND, some silt,	0.0				
\sim		8/13/14/23	22/24	S-5 (10'-12')	Medium dense, brown-red, fine to med little fine gravel, wet	ium SAND, some silt,	0.0	-			
- - 					End of exploration at 12'						
								-			
- [
							:				
- - -	20						i			į	
- -		i					}				
- -		-									
- - - -						į				ļ	
- -											
emarks: 1. Soil beadspar	<u></u>										

creened, in field using TEI model 580B, photolonization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

					LOG OF BORING CM-20)		Page) 1 OF 1
PRO JECT: Cr	rane Manufacturii							' ~a~	,
ORILLING CO	NTRACTOR	ıg		Ironewii		LOCATION:	Springfield, MA	PROJECT NO. : 0	076-22-04
Seaboard	Environmental Di	illing		FOREMAI HELPER		DATE STARTED		DATE FINISHED	010 24 07
DRILLING EQ	UIPMENT	iiiig		MELPER	Ronnie	09/23/2009		09/23/2009	
	em Auger Rig					COMPLETION DEPTH		GROUND SURFA	CE ELEV.
YPE BIT	Hollow Ste	m Auger	SIZE	&TYPE OF	CORE BARREL	10'		DATUM	
CASING				w/// _ 0/	OOKE BARKEL	No. Samples	5		UNDIST.
CASING HAM	M.	WEIGHT	-		DROP	WATER LEVEL (FT.)		FIRST	COMPL. HR.
AMPLER: 2"	O.D. Split Spoon	Rod A 1 5/8	" O.D.			BORING	Couthern	6'	
AMPLER	Safety	WEIGHT		DROP		LOCATION	Southeast comer of near Moxon Street e	property,	
IAMMER		140 lbs.		30" (Wire I	ine)	ENGINEER/GEOLOGIS	Frin Thompson	ntrance	
SAMPLES			AMPL				Dist (Hompson		
SAMPLES	DEPTH	PENETR.			DESCRIPTION	NC	FIELD	SOIL	DEMARKS
	FT.	RESIST. BL/6 IN.	IN.	NO.			MEASUREMENTS	DESCRIPTION	REMARKS
\cdot \setminus $/$	<u> </u>	8/13/20/16	12/24		Top 4": Dense, brown, fine to medium	SAND, little silt, dry	0.0	FILL	
– X	 -			(0-2')	Bottom 8": Dense, brown, fine to med	ium SAND, some silt,		1'	
		ŀ	1	1	trace fine gravel, dry		i	GLACIAL TILL	
\leftarrow	 			l .	1			02,000	
\cdot \setminus $/$		21/20/19/20	16/24	1	Dense, brown-red, fine to medium SA	ND, some silt, little	0.0		
- X		-		(2'-4')	fine gravel, dry			ŀ	
		1	ļ					ŀ	
\leftarrow	 	26/31/35/41	44/54		Ĺ		1		
	5	20/31/35/41	14/24	3	Dense, brown-red, fine to medium SA	ND, some silt, little	0.0		
- X	- ° -	-1		(4'-6')	fine gravel, dry				
				ļ					
\leftarrow		27/30/37/31	10/04				i		
		21/30/37/31	10/24		Dense, brown-red, fine to medium SAI	ND, some silt, little	0.0		
- X i		1	1	(6'-8')	fine gravel, wet at 6'				
		1						i i	
		20/21/32/42	17/24	S-5	Donos hymner and fire to the pass		ŀ		
_ \/		20,21,02,42	17724	(8'-10')	Dense, brown-red, fine to medium SAt	ND, some silt, little	0.0		
		1		(0-10)	fine gravel, wet				
\angle	10]						1 1	
		1			End of exploration 10'			*	
_ [].]	ľ	'	End of exploration to				
[1						ĺ	
- [J J	- 1					ŀ	
L		1 1					İ		
- [
ļ			1						
-		i 1	J	,					
-]	1	l l				į	
- }-	15	1	J					İ	
F		l l	- 1				ŀ		
·			1	ĺ			l	i	
ŀ		[- 1				ŀ	ŀ	
· -		1 1		i					
+			- 1						
·				ļ					
- -	_	1 1		1					
·		1	ĺ					i	
F	20			ļ					
· -] [i					
T T			- 1					i	
·				1		l		İ	
F			ĺ	l		l		ŀ	
j						1	1		
T				- 1		İ	İ		
T T									
_		İ							
		1	ł	ł			ļ		i
<u></u>	25	1						1	
[- 1		J					
		1		[ļ		Į

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-21

Page 1 OF PROJECT: Crane Manufacturing LOCATION: Springfield, MA DRILLING CONTRACTOR PROJECT NO.: 0076-22-04 FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling HELPER Ronnie 09/24/2009 09/24/2009 DRILLING EQUIPMENT COMPLETION DEPTH GROUND SURFACE ELEV. Hollow Stem Auger Rig TYPE BIT DATUM Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING HAMM. R UNDIST COMPL HR WEIGHT DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon 14 1 hr Rod A 1 5/8" O.D BORING Southwest portion of property, SAMPLER Safety WEIGHT DROP LOCATION in former Machine Shop **HAMMER** 140 lbs 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC TYPE DESCRIPTION SOIL REMARKS FT. RESIST. ÍN, NO. DESCRIPTION BL/6 IN. S-1 Very dense, brown, fine to medium SAND, some silt, trace fine sub-angular 50 for 1" (0-1')gravel, trace debris (concrete in tip), dry CONCRETE FILL 17/10/11/9 5/24 Medium dense, brown, fine to medium SAND, some debris (concrete), S-2 (1'-3')little silt, dry 3/4/3/4 10/24 S-3 Loose, brown, medium to coarse SAND, little fine sub-angular gravel (5'-7')8/18/35/38 3/24 S-4 Very dense, brown, fine to medium SAND, some concrete, little red rock, dry (10'-12')GLACIAL TILL 10/10/12/13 NR S-5 No Recovery (15'-17') 25/24/14/20 12/24 Dense, brown-red, fine to medium SAND, some silt, little fine sub-angular (17'-19') gravel, trace coarse sand, wet 9/6/10/10 12/24 S-7 Medium dense, brown-red, medium to coarse SAND, some fine sub-angular (20'-22')gravel, little fine sand, little silt, wet 10/ 2/24 S-8 Very dense, quartz, dry 50 for 5" (25'-27') Auger refusal at 26.51 End of exploration at 26.5 emarks

LOG OF BORING CM-22

Page 1 OF 1

PROJECT: Crane Manufacturing DRILLING CONTRACTOR JEOGEMAN De LOCATION: Springfield, MA PROJECT NO.: 0076-22-04											
DRILLING CONTRACTOR			FOREMA	N Rob	DATE STARTED	Springfield, MA		076-22-04			
Seaboard Environmental Dr DRILLING EQUIPMENT	illing		HELPER	Ronnie	09/24/2002		DATE FINISHED 09/24/2009				
Hollow Stem Auger Rig					COMPLETION DEPTH		GROUND SURFAC	PE ELEV			
TYPE BIT Hollow Ste	m Auger	Teige	PTVDE OF	CORE BARREL	18'		DATUM				
CASING	in Auger		alter of	CORE BARREL	No. Samples	9	UNDIST.				
CASING HAMM.	WEIGHT			DROP	TIME WATER LEVEL (FT.)		FIRST	COMPL. HR.			
SAMPLER: 2" O.D. Split Spoon	Rod A 1 5/8	" O.D.			BORING	South central portion	12'				
SAMPLER Safety HAMMER	WEIGHT		DROP		LOCATION	in former Machine S	hon				
TAIWINGK	140 lbs.	ARADI F	30" (Wire	Line)	ENGINEER/GEOLOGIST	Brin Thompson	Пор	<u> </u>			
SAMPLES DEPTH FT.	PENETR. RESIST,	REC.		DESCRIPTIO		FIELD MEASUREMENTS	SOIL DESCRIPTION	WELL CONSTRUCTION			
	BL/6 IN.	 	ļ	4,000			DEGOKII HOK	CONSTRUCTION			
	6/10/8/7	12/24	S-1 (1'-3')	4": Brown, fine to medium SAND, dry 8": CONCRETE Medium dense, brown, medium to coa gravel, trace fine sand, trace silt, dry	rse SAND, some fine	0.0	TOPSOIL 1' CONCRETE FILL				
5	3/1/2/3	14/24	S-2 (3'-5')	Top 6": Loose, black, fine to medium S Bottom 8": Loose, brown, medium to c little fine gravel, trace fine sand, trace	oarse SAND,	0.0					
-	6/8/9/15	NR	S-3 (5'-7')	Rock in tip		0.0					
	6/7/11/17	24/24	S-4 (7'-9')	Medium dense, brown, medium to coa fine gravel, trace (-) fine sand, trace (-)	rse SAND, some silt, dry	0.0		8'			
10 _	20/23/27/25	18/24	S-5 (9'-11')	Dense, brown, medium to coarse SAN fine gravel, trace(-) fine sand, trace(-) s	D, some illt, moist	0.0	9' + SAND AND GRAVEL				
	17/ 50 for 5"	3/24	S-6 (11'-13')	Very dense, brown, medium to coarse gravel, trace (-) fine sand, trace (-) silt,	SAND, some fine wet at 12¹	0.0					
- 15	6/16/26/27	14/24	S-7 (13'-15')	Dense, gray, medium to coarse SAND, fine sand, little silt, wet	some gravel, little	36.8					
- " -	20/24/ 50 for 4"	24/24	S-8 (15'-17')	Dense, gray, medium to coarse SAND, fine sand, little silt, wet	some gravel, little	92.1					
	50 for 1"	1/24	S-9 (17'-19')	Very dense, brown-red, medium to coal little fine gravel, little fine sand, wet End of exploration at 18'	rse SAND, some silt,	136.0	17' * GLACIAL TILL				
			į								
- - -			1								
lemarks:											

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
2. Well at 18' below ground surface, screen 18'-8', solid PVC riser 8' -2.5' above ground surface. Sand pack 18'-6', bentonite clay 6'-4', standpipe cemented in place

LOG OF BORING CM-23

PROJECT: C	rane Manufacturir	ng.				LOCATION:	Opringfield MA	IDDO IDOZNA		
DRILLING CO	NTRACTOR			FOREMA	N Rob	DATE STARTED	Springfield, MA	PROJECT NO.: 0076-22-04		
Seaboard	Environmental D	illing		HELPER	Ronnie	09/24/2009		DATE FINISHED		
DRILLING EQ	UIPMENT					COMPLETION DEPTH		09/24/2009 GROUND SURFAC	SE PLEV	
Hollow Ste	em Auger Rig					14.5'		DATUM	JE ELEV.	
TYPE. BIT	Hollow Ste	m Auger	SIZE	&TYPE OF	CORE BARREL	No. Samples	7	DATON	UNDIST.	
CASING						TIME	······································	FIRST	COMPL.	HR.
CASING HAMI		WEIGHT			DROP	WATER LEVEL (FT.)		NE		'''\.
SAMPLER: 2	O.D. Split Spoon Safety		". Q.D.			BORING	Northern corner of fo	ormer Steel Shop.		
HAMMER	Salety	WEIGHT		DROP	11-3	LOCATION	at southern end of s			
	T	140 fbs.	AMPLI	30" (Wire	Line)	ENGINEER/GEOLOGIST	Brin Thompson			
SAMPLES	DEPTH	PENETR.	REC		<u> </u>					
	FT.	RESIST.	IN.	NO.	DESCRIPTION	UN	FIELD	SOIL	REMA	ARKS
<u> </u>	i	BL/6 IN.	1 ""				MEASUREMENTS	DESCRIPTION		
					4": TOPSOIL			700000		
		1			8": CONCRETE			TOPSOIL 1 CONCRETE	l	
		6/4/4/6	4/24	S-1	Loose, red, BRICK, dry		0.0			
L Y				(1'-3')	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0.0	FILL		
L /\		···								
\leftarrow		_[1					[1	
- \ /		12/16/17/30	14/24	S-2	Dense, black, fine to medium SAND,	some silt, some red	0.0		[
- X	<u> </u>	_]	(3'-5')	brick, dry					
- / \	<u> </u>	1	l	l]	
$\vdash \longleftrightarrow$	5 _		L	_	L					
- \ /		18/34/20/17	18/24		Top. 8": Very dense, red, BRICK, dry		0,0	.	•	
$-\mathbf{x}$	 -	-{	i	(5'-7')	Bottom 10": Very dense, brown, medic	um to coarse SAND,	f	6' ♥		
- / \	⊨	1			some fine gravel, trace (-) fine sand, to	race (-) silt, moist	,	SAND AND	1	
$\overline{\langle}$		20/21/23/20	20/24	S-4	Page have and the last			GRĄVEL		
_ \/		2012 1123120	20/24	(7'-9')	Dense, brown, medium to coarse SAN	ID, some fine	2,4			
		-		(7-5)	gravel, trace fine sand, trace silt, mois	t (No. odor, sticky)*				
			ł							
		19/31	8/24	S-5	Very dense, brown, medium to coarse	SAND same fine		:		
_	10	50. for 3"		(9'-11')	gravel, trace fine sand, trace silt, mois	t (eticlos)*	1.3	' ;		
_	-	i i		`=,	g. a. roi, and a mile during, made, sing, miles	(aucky)				
$-\leftarrow$							·	:		
- 🔪 🖊		9/21/	4/24	S-6	Very dense, brown, medium to coarse	SAND, some fine	0,4			
X I		50 for 5"		(11'-13')	gravel, trace fine sand, trace silt, mois	t (sticky)*				
- / 🖊		1			1					
\leftarrow		1						13' ₹		
- \ <i>/</i>		4/9/17/ 50 for 4*	10/24		Medium dense, brown-red, fine to med	lium SAND, some	9.7	GLACIAL TILL		
$ \times$ $+$		301014	i	(13'-15')	sit, little fine gravel, trace coarse sand	, moist (Odor)	, '			
- / \	15	,			Auger refusal at 14.5' End of exploration at 14.5'			+		
		1 1			Lind of exproration at 14.5			•		
		i i								
_ [1								
[]						i		
- F										
— ļ.		į 1								
-	_	<u> </u>	İ	į						
}		[1		
· -		[- 1				1			
- ⊦			İ				ŀ			
·										
_		1	- }							
	<u></u>		İ				İ	1		
. [1	-				ŀ	ľ		
_ [1			1				
. <u>L</u>				ĺ						
_]				ļ	ļ		
<u> </u>							I	j		
<u> </u>	25]		ĺ		i
_	_ 7			Ì		İ				
_ <u> </u>			1				ļ			
⊢		1	- 1	ļ						
emarks;					·			1		
	no enropmed to a	da unime ZE)		000						
* Sticky like bro	Wn sugar.	and moning term	iouel 50	olatana ava	nization detector (PID) referenced to be	nzene in air. Readings sho	wn in parts per millio	n (ppm)		

* Sticky like brown sugar.

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-23A

Page 1 PROJECT: Crane Manufacturing LOCATION: Springfield, MA DRILLING CONTRACTOR PROJECT NO.: 0076-22-04 FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling HELPER Ronnie 10/27/2009 10/27/2009 DRILLING EQUIPMENT GROUND SURFACE ELEV. COMPLETION DEPTH Hollow Stem Auger Rig TYPE BIT DATUM Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING CASING HAMM. UNDIS TIME FIRST COMPL HR. WEIGHT DROP WATER LEVEL (FT.) ΝE SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D. Adjacent to CM-23, Southeast quadrant of site BORING SAMPLER WEIGHT DROP LOCATION HAMMER 140 lbs 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC TYPE/ DESCRIPTION FIELD SOIL REMARKS FT. RESIST. IN. NO. MEASUREMENTS DESCRIPTION BL/6 IN. 12": CONCRETE CONCRETE 26/19/14/17 16/24 S-1 Brown, medium to coarse SAND, some brick, some 0.0 FILL (1'-3') concrete 17/15/18/21 18/24 S-2 Red BRICK and CONCRETE 0.0 (3'-5')End of exploration at 5

Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
 Sticky like brown sugar.

LOG OF BORING C	M-24
-----------------	------

	rane Manufacturing	g				LOCATION:	Springfield, MA	PROJECT NO. :. 0	078-02-04	
DRILLING CON Seahoard I	NTRACTOR Environmental Dri		-	FOREMAN		DATE STARTED	Optingnoid, i.e.	DATE FINISHED.	U(D-44-0-1	
DRILLING EQU		liing		HELPER	Ronnie	09/25/2009 COMPLETION DEPTH		09/25/2009 GROUND SURFAC		
Hollow Ste	ern Auger Rig		12,22			15'		DATUM	E ELEV.	
CASING	Hollow Ster	n Auger	SIZE	\$TYPE.OF.(CORE BARREL	No. Samples TIME	7		UNDIST.	
CASING HAMN		WEIGHT	<u> </u>		DROP	WATER LEVEL (FT.)		FIRST 12,5'	COMPL.	HR.
SAMPLER: 2" (SAMPLER	O.D. Split Spoon	Rod A 1.5/8	" O.D.			BORING	Southwest corner of		lwin St.	
HAMMER.	Safety	WEIGHT 140 lbs.	ļ	DROP 30" (Wire L	l ine\	LOCATION ENGINEER/GEOLOGIST				
	T	S,	AMPLE	S		ENGINEER/GEOLOGIO	Brin Thompson	 	 	
SAMPLES	DEPTH FT,	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	RKS
		7/11/12/13	12/24		2": ASPHALT 8": ASPHALT base, brown, fine to med Top 6": Medium dense, dark brown, m little fine gravel, trace fine sand, trace Bottom 6": Medium dense, brown, med	nedium to coarse SAND, silt, dry	0.0	ASPHALT FILL 2' SAND AND		
		18/13/15/18	24/24	S-2 (3'-5')	SAND, some fine gravel, little fine san Medium dense, brown, medium to coa gravel, trace(-) fine sand, trace(-) slit, o	id, trace silt, dry arse SAND, some fine	0.0	GRAVEL.		
		23/30/31/14	18/24	S-3 (5'-7')	Very dense, brown, medium to coarse gravel, trace(-) fine sand, trace(-) silt, o	SAND, some fine dry	0.0			
-		19/20/14/12	21/24		Dense, brown, medium to coarse SAN: gravel, trace(-) fine sand, trace(-) silt, o		0.0		<u>.</u>	
	10	17/16/18/23		S-5 (9'-11')	Dense, brown, medium to coarse SANi gravel, trace(-) fine sand, trace(-) silt, n	D, some fine noist at 10'	0.0		·	
-		34/41/22/25			Dense, brown, medium to coarse SANI gravel, trace(-) fine sand, trace(-) silt, w		1.0			
	15	14/32/31/23	24/24	(13'-15')	Top 20*: Dense, brown, medium to coa some fine gravel, trace(-) fine sand, tra Bottom 4*: Very dense, brown-red, fine some fine gravel, little silt, trace coarse	ice(-) silt, wet to medium SAND.	. 0.4	14' + GLACIAL TILL. +		
- - - - -			:							
-	20									
- - - -		:		1						
temarks:		eld using TEI n	nodel 58	SOB photolo	nization detector (PID) referenced to be	orzene in air. Readings sho	wn in narts per million	(npm)		

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-25 Page _ 1 OF PROJECT: Crane Manufacturing OCATION: Springfield, MA PROJECT NO.: 0076-22-04 DRILLING CONTRACTOR FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling DRILLING EQUIPMENT HELPER Ronnie 09/25/2009 09/25/2009 COMPLETION DEPTH GROUND SURFACE ELEV. Hollow Stem Auger Rig 20 DATUM TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING TIME FIRST COMPL CASING HAMM HR WEIGHT DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon 11 Rod A 1 5/8" O.D. BORING South end of site, in Machine Shop, near trench SAMPLER Safety WEIGHT DROP OCATION HAMMER 140 lbs. 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC TYPE/ DESCRIPTION FIELD SOIL WELL FT. RESIST. NO. **MEASUREMENTS** DESCRIPTION CONSTRUCTION BL/6 IN. Brown, fine SAND and SILT, dry 6": CONCRETE CONCRETE 5/4/3/4 18/24 S-1 Loose, brown, fine to medium SAND, little silt, trace 0.0 FILL (1'-3')coarse sand, dry 5/5/5/5 15/24 S-2 Medium dense, brown, fine to medium SAND, some silt, 0.0 SAND AND (3'-5')little coarse sand, trace fine gravel, dry GRAVEL 6/7/9/13 20/24 S-3 Medium dense, brown, medium to coarse SAND, little fine 0.0 (5'-7')gravel, trace fine sand, trace(-) silt, dry 16/21/20/20 19/24 S-4 Dense, brown, medium to coarse SAND, little fine 0.0 (7'-9')gravel, trace fine sand, trace(-) silt, dry 31/29/26/12 24/24 S-5 Very dense, brown, medium to coarse SAND, little fine 0.0 (9'-11') gravel, trace fine sand, trace(-) silt, moist 36/43/41/45 16/24 S-6 Top 8": Very dense, brown, medium to coarse SAND and fine 118 GRAVEL, trace(-) fine sand, trace(-) silt, wet (11'-13')Bottom 8": Very dense, gray, medium to coarse SAND and fine GRAVEL, trace(-) fine sand, trace(-) silt, wet (Odor) 20/23/22/24 16/24 Dense, gray, medium to coarse SAND and fine GRAVEL, S-7 82.3 trace(-) fine sand, trace(-) silt, wet (13'-15')15 5/6/36/42 5/24 Dense, brown-red, fine to medium SAND, little gravel, GLACIAL TILL 51.2 (15'-17') little silt, trace coarse sand, wet 4/4/4/ 4/24 S-9 Loose, brown-red, fine to medium sand, some sift, little 1.8 50 for 3" (17'-19') fine gravel, trace coarse sand, wet 18' End of exploration at 20'

lemarks:

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

^{2.} Well at 18' below ground surface, screen 18'-8', solid PVC riser 8' -2.5' above ground surface. Sand pack 18'-6', bentonite clay 6'-4', standpipe cemented in place

					LOG OF BORING CM-26			Page	e1 OF 1
PROJECT: Cr	ane Manufacturin	ıg.				ILOCATION:	0-2-5-14 141		
DRILLING CO	NTRACTOR			FOREMA	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO. : . (076-22-04
Seaboard.	Environmental Dr	illing		HELPER	Ronnie	09/25/2009		DATE FINISHED. 09/25/2009	
DRILLING EQU	UIPMENT em Auger, Rig		-			COMPLETION DEPTH		GROUND SURFA	CE ELEV
TYPE BIT	Hollow Ste	m Augas	loize	075/DE 05		10'		DATUM	<u>.</u>
CASING	Honow Ste	III Auger	SIZE	&IYPE OF	CORE BARREL	No. Samples	5		UNDIST.
CASING HAM	vi.	WEIGHT	ــــــــــــــــــــــــــــــــــــــ		DROP	TIME		FIRST	COMPL. HR.
SAMPLER: 2"	O.D. Split Spoon	Rod A 1.5/8	".O.D.		BROF	WATER LEVEL (FT.)		3'	
SAMPLER	Safety	WEIGHT		DROP		BORING LOCATION	Southeast corner of	property,	
HAMMER.		140 lbs.		30". (Wire. I	ine)	ENGINEER/GEOLOGIST	near Moxon Street e	entrance	
SAMPLES	DEDT.		AMPLE						
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	NO.	DESCRIPTIO		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
		11/16/20/13		S-1 (0-2')	Top 10": Dense, brown, medium to consand, trace silt, dry Bottom 4": Dense, brown-red, fine to medium to constitute to constitut	nedium SAND, some	0.0	FILL GLACIAL TILL	
- -		16/18/13/14		(2'-4')	Dense, brown-red, fine to medium SAI some silt, wet at 3'		0,0		
	5 _	18/21/12/16		\$-3 (4'-6')	Dense, brown-red, fine to medium SAN some fine gravel, wet	,	0.0		
		24/26/40/47	8/24	S-4 (6'-8')	Very dense, brown-red, fine to medium some fine gravel, wet		0,0	:	
-X	10	19/20/21/40	12/24	S-5 (8'-10')	Top 5": Dense, brown-red, coarse SAN Bottom 7": Dense, brown-red, fine to m silt, some fine gravel, wet	D, wet edium SAND, some	0,0		
- - - - - -					End of exploration at 10'				
· -	15								
- [
- - - - -									
- - -									
-									
	25 								
marke									

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

					LOG OF BORING CM-27			Page	e10F	1
PROJECT: Cr	rane Manufacturin									
DRILLING CO	NTDAGTOR	<u>y</u>				LOCATION:	Springfield, MA	PROJECT NO.: 0	076-22-04	
				FOREMAI	N. Rob	DATE STARTED		DATE FINISHED	O LL U	
Seaboard	Environmental Dri	lling		HELPER	Ronnie	09/25/2009				
DRILLING EQ	UIPMENT							09/25/2009		
Hollow Ste	em Auger Rig					COMPLETION DEPTH		GROUND SURFA	CE ELEV.	
TYPE BIT	Hollow Ster	n Augus	TOUTE	077/DE 05		14'		DATUM		
CASING	HOHOW, Stel	11 Auger		& LYPE OF	CORE BARREL	No. Samples	7		UNDIST.	
						TIME		FIRST		UD
CASING HAMI	M	WEIGHT			DROP	WATER LEVEL (FT.)			COMPL.	HR.
SAMPLER: 2"	O.D. Split Spoon	Rod A 1.5/8	3" O D					10'		
SAMPLER	Safety	WEIGHT		DROP		BORING	Southeast corner of	property,		
HAMMER.	Caloty					LOCATION	near Moxon Street e	entrance		
THE STREET	T	140.lbs.		30". (Wire.)	Line)	ENGINEER/GEOLOGIST	F Brin Thompson			
-	ľ		SAMPL		1				 	
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC IN.	NO.	DESCRIPTIO	DN	FIELD MEASUREMENTS			RKS
	/		-				1			
- \ /		4/11/17/14	12/24	\$ S-1	Medium dense, brown, fine to coarse	SAND, little sift, little	0.0	FILL	 	
_ V	<u>L</u>			(0-2')	fine gravel, dry	,	V.5	1,155.66	1	
			1	i '/	and granting any				Ì	
- / \		1	ĺ		1			l 1		
$\overline{}$	 						í			
- \ /		8/8/8/8	NR	S-2	Rock in tip		Ī	!	<u> </u>	
	_	1		(2'-4')	,		1 -		1	
- X		1	1	(2-4)	İ		1		1	
- / \	 	1	1	1			1		Ì	
	 	1	1	ì					1	
- \ /		6/5/5/8	8/24	S-3	Medium dense, brown, fine to medium	CAND and OUT 1991-				
_ \/	5		"-		medical derise, brown, and to medium	SAND and SILI, little	0,0		1	
— X i		4	1	(4'-6')	fine gravel, dry				i	
- / 🖊	<u> </u>	l							ĺ	
	L			ļ						
		26/39/50/45	10/24	S-4	Voncdones beautiful it of					
- 🔪 🖊 🛭		20100/30/40	10/24		Very dense, brown, fine to medium SA	ND, some slit, little	0.0	i I .		
X !		4	1	(6'-8')	fine gravel, little debris (concrete), dry				1	
- / 🖊 📗		i	1	l			1		1	
\			İ	ł			1		ŀ	
	_	12/13/14/14	40/04	0.5	ha		!	8¹ +	1	
· \ / i		12/13/14/14	12/24	I.	Medium dense, brown-red, fine to med	ium SAND, some fine	0,0	SAND	1	
- X		ŀ	1	(8'-10')	gravel, some silt, little coarse sand, we	t at 10'		1		
. /\!			1		, , , , , , , , , , , , , , , , , , , ,		i		!	
	10	1.	l				i		ł	
()		004045			i		l	•		
· \		6/9/12/15	18/24	S-6	Medium dense, brown, fine to medium	SAND, little coarse	0.0			
– V L		i	l	(10'-12')	sand, fittle silt, wet	•	""			
			! .	' '	, , , , , , , , , , , , , , , , , , , ,					
			l	[ŀ		
\leftarrow						:			İ	
· \		13/13/15/20	20/24	S-7	Medium dense, brown, fine to medium	SAND, little coarse	0.0	1		
V L			l i	(12'-14')	sand, little silt, wet		0.0			
			l	, , ,						
			1 1							
								+		
ļ.,	[End of exploration at 14'					
_ L	15	i		,						
Γ	-	 								
r						İ				
 ⊦		1	<u> </u>				1			
ļ.,	<u> </u>	į	1		1		 			i
_ L	<u></u>]	I							
		i				ĺ				- 1
F		ľ	1				1	ļ		ļ
- F-	—-	J	I			l	i	ĺ		
L		i	J			ı		l		1
		i	Į.					l		ŀ
F		ı	[ł				- 1		- 1
H		1		ſ		[l		
-	40	ı	- 1	I		l	1	i		l
L		I	- [ŀ			1
_	J	i	- 1	i						ĺ
r		ľ	- 1	I				l		Į.
<u> </u>	<u> </u>		ı	I			J			l
- L		1	- 1	ļ		1	i	ļ		l
		ŀ	ļ	i		1	!	į		- 1
	-	l	1	I		ĺ		Ī		I
- j-			- 1	I						
 	1	1	- 1	i						- 1
- L		i	- 1	I		J				- 1
		ı	- 1	I		l				- 1
<u> </u> -		1				1		1		- 1
- -	25	f	1	f				I		į
<u> </u>	f		- 1	I				l		
_		Į	- 1			J	1	l		
- F		ı	- 1]		ł	i	l		
-			1	- 1			ļ	l		l

Remarks:

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

					LOG OF BORING CM-28	<u> </u>		Pag	e 1 OF 1		
PROJECT: C	rane Manufacturing					LOCATION:	0-1-6-11-6-1				
DRILLING CO	NTRACTOR			FOREMA	N Rob	DATE STARTED	Springfield, MA	PROJECT NO.: 0076-22-04			
Seaboard	Environmental Dril	ling		HELPER	Ronnie	09/28/2009		DATE FINISHED			
DRILLING EQ	UIPMENT em Auger Rig					COMPLETION DEPTH		09/28/2009 GROUND SURFA	CE ELEV		
TYPE BIT	Hollow Stem	Augos	ICIZE C	OT OF		5.5'		DATUM	WACE LELY.		
CASING		Augei	10145	ATTPE OF	CORE BARREL	No. Samples	2		UNDIST.		
CASING HAM	M.	WEIGHT	-		DROP	TIME		FIRST	COMPL. HR.		
SAMPLER: 2"	O.D. Split Spoon	Rod A 1 5/8	" O,D.		BRO	WATER LEVEL (FT.) BORING	- A	NE			
SAMPLER	Safety	WEIGHT		DROP		LOCATION	Center east, in Mac	hine Shop near Mox	on St.		
HAMMER		140 lbs.		30" (Wire L	ine)	ENGINEER/GEOLOGIS	T Brin Thompson	T			
SAMPLES	DEPTH	DTU DENETO LEGAL COMPANION				_	- managed	·			
Orani ELO	FT.	RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIPTIO	N	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS		
		DLIG IN.			12": CONCRETE			CONCRETE			
		04/00/00/40						GLACIAL TILL			
\		21/23/26/18	14/24	S-1 (1'-3')	Dense, brown-red, fine to medium SAl gravel, little silt, dry	ND, some fine					
- /]		(, 0)	graver, maje sint, tily		0.0				
$\overline{\ }$		f	i		1		0.0				
- \ /		7/8/31/	12/24	S-2	Dense, brown-red, fine to medium SAI	ND, some silt,		!			
– X		50 for 2"	1	(3'-5')	little fine gravel, trace(-) coarse sand, i	moist			•		
- / \	5						0.0				
`											
					End of exploration at 5.5'	 		<u> </u>			
_					= 1.5 or exploration at 6.5						
_			- 1								
-]								
i			i								
-			J								
			į								
	10		-						ļ		
_ [i								
_ [1									
. [- i	Ì			į į				
		ļ									
• }		ľ	- 1				[
-											
· .			ļ								
_ [1	1	*							
[15			1							
L			- 1								
		1					1				
-			- [ĺ							
- J		į									
ŀ	I		-	Į					J		
- ⊢	—						i		<u> </u>		
_	<u> </u>		ļ								
	_ = -]		İ							
	20						İ				
<u> </u>			- 1	ļ							
-		- 1									
-	-]		- 1	J							
- -				İ							
_	-					l			1		
			Ī			l			1		
_ [ĺ					ľ		
	_ 7					1					
- -	25			- 1			į	Ì	1		
-		- 1					Ī		l		
]	- 1	ļ					į		
H		ĺ	- }					- 1			
mades.							į.				

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

					LOG OF BORING CM-29	<u>-</u>		Pag	e_ 1 OF 1	
PROJECT: Cr	ane Manufacturing	1.				LOCATION;	0-2-011114	1		
DRILLING CO	NTRACTOR			FOREMAI	l Rob	DATE STARTED	Springfield, MA	PROJECT NO. : (0076-22-04	
Seaboard.	Environmental Dri	lling		HELPER	Ronnie	09/28/2009		DATE FINISHED. 09/28/2009		
DRILLING EQU	JIPMENT					COMPLETION DEPTH		GROUND SURFA	CE ELEV	
TYPE BIT	m Auger Rig Hollow Sten		T			8,5'		DATUM	OL CLEV.	
CASING	Hollow, Stell	n Auger	SIZE	& TYPE OF	CORE BARREL	No. Samples	4		UNDIST.	
CASING HAMI	И.	WEIGHT			DROP	TIME		FIRST	COMPL. HR.	
SAMPLER: 2"	O.D. Split Spoon	Rod A 1.5/8	3" O D		BROP	WATER LEVEL (FT.)		6'		
SAMPLER	Safety	WEIGHT		DROP		BORING LOCATION	Center east, in form	er Machine Shop ne	ar Moxon St.	
HAMMER		140 lbs.		30". (Wire L	ine)	ENGINEER/GEOLOGIST	Brin Thompson		· · · · · · · · · · · · · · · · · · ·	
SAMPLES	DED.		SAMPLI				I			
SAMPLES	DEPTH FT.	PENETR. RESIST.			DESCRIPTION	NO	FIELD	SOIL	REMARKS	
	'''	BL/6 IN.	IN.	NO,			MEASUREMENTS	DESCRIPTION		
		1 220 110	+	 	10": CONCRETE			<u> </u>		
		1	İ		TO E CONTONETE			CONCRETE		
- \		4/5/26/37	11/24	S-1	Top. 3": Dense, brown, medium to coa	rse SAND, trace(-) fine	0.0	1'FILL	4	
$ \times$		1		(1'-3')	sand, trace(-) silt, dry		0.0	GLACIAL TILL		
/ \ \		i			Bottom 8": Dense, brown-red, fine to n	nedium sand, some]		
\leftarrow		1,,,,,,,,		l _	silt, little fine gravel, dry					
- \ /		11/12/14/12	8/24	4	Medium dense, brown-red, fine to med	lium SAND, some siit,	0.0			
$ \times$ $ $		1	1	(3'-5')	little fine gravel, trace(-) coarse sand,	dry				
- / \	5	1						i i		
		13/14/13/14	18/24	S-3	Top.5": Medium dense, brown, fine to	madium CAND turns				
_ 🗸 l	<u> </u>			(5'-7')	silt, trace coarse sand, moist	medium SAND, trace	0.0	*		
- /\]		` ′	Bottom 13*: Medium dense, brown-red	medium to fine			İ	
\leftarrow					SAND, some silt, little fine gravel, trace	e(-) coarse sand, wet at 6'			1	
- \ /		20/	6/24	S-4	Very dense, brown-red, fine to medium	SAND, some silt.	0.0			
- X I		50. for. 2"		(7'-9')	little fine gravel, trace(-) coarse sand, v	vet		1,4		
· / \					Auger refusal at 8,5'	<u> </u>		*		
				[End of exploration at 8.5'					
_ [10			ł	Lind of exploration at 6.5		İ			
- [
Ì										
- -			Ì			•	i			
-		ļ	ļĮ							
·			ĺĺ						i	
		ļ								
	_	Ī								
. [ļ						
L	15	ſ	- 1							
·		- 1		ļ						
- J-		i	İ	ĺ						
-	_									
		ĺ	1	ı		1				
_		l								
		ľ		l			ŀ			
_ [l		ĺ		1				
Ļ		İ		J						
- -	20			İ						
<u> </u>	–	l	- 1			1				
~ }-	— —		Í							
]						ľ	
~ -			- 1	i		ļ		-		
_				İ						
]]					Ì	
			Ì	ľ			ľ			
<u> </u>	_	i				}		ļ		
	25		1	1			J	ļ	1	
 		1		ſ			1		[
- ⊢				- 1		ļ				
 -	-						- 1		1	
							1	i	1	

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

PROJECT: Cr	rane Manufacturing	g				LOCATION: Springfield, MA PROJECT NO :				
DRILLING CO	NTRACTOR			FOREMAN		DATE STARTED	Springitera, IMA	PROJECT NO.: 00 DATE FINISHED	076-22-04	
DRILLING EQU	Environmental Dril	iling		HELPER	Ronnie	09/28/2009		09/28/2009		
Hollow Ste	em Auger Rig					COMPLETION DEPTH		GROUND SURFAC	OF FLEV	
TYPE BIT	Hollow Stem	m Auger	1917	PTVDE OF	CORE BARREL	13.5'		DATUM	/L L-L	
CASING		I Augo.	1"-	ATTE OF	COKE BARKEL	No. Samples	6		UNDIŞT.	
CASING HAMA	M.	WEIGHT			DROP	TIME WATER LEVEL (FT.)		FIRST	COMPL,	HR.
	O.D. Split Spoon	Rod A 1 5/8"	8" O.D.		[5,10]	BORING	East Cantral parties	71 of elfo adiscont to b		
SAMPLER HAMMER	Safety	WEIGHT		DROP		LOCATION	East Central portion	of site, adjacent to N	Moxon Street	Ĺ
HAIVIIVIEN	Т	140 lbs.	***************************************	30" (Wire L	Line)		Brin Thompson	T	т —	
SAMPLES	DEPTH	PENETR.	SAMPLE					 	 	
	FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	NO.	DESCRIPTIO	NC	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	ARKS
_	<u></u>	T			4": CONCRETE		+'	CONCRETE		
		10/8/7/7	18/24	S-1 (1'-3')	Brown, fine to medium SAND, some fir Top 5": Brown, fine to medium SAND, trace silt, dry Bottom 13": Medium dense, brown, me	some fine gravel,	0.0	FILL		
-		8/9/9/9 	17/24	S-2	some fine gravel, trace(-) fine sand, tra Medium dense, brown, medium to coar fine gravel, trace(-) fine sand, trace(-) s	ace(-) silt, dry arse SAND. little	0.0			
		9/10/10/11	20/24		Medium dense, brown, medium to coar fine gravel, trace(-) fine sand, trace(-) s	rse SAND, little silt, dry	0.0			:
X		7/10/11/14	6/24	S-4 (7'-9')	Medium dense, brown, medium to coan gravel, trace (-) fine sand, trace(-) silt, v	se SAND, some wet	0.0			
$\overline{}$	10	4/5/8/13	4/24	S-5 (9'-11')	Medium dense, brown, medium to coars gravel, trace(-) fine sand, trace(-) silt, w	se SAND, some vet	0.0			
		11/8/10/ 50 for 5 [™]	16/24	(11'-13') : 	Top 12": Medium dense, brown, medium some gravel, trace(-) fine sand, trace(-) Bottom 4": Medium dense, brown-red, fi some slit, little fine gravel, wet Auger refusal at 13.5" End of exploration at 13.5') siit, wet	0.0	12' GLACIAL TILL		: . · ·
I I I I 	15									* - -
- - - - - - - -	20									
.										
паrks: . Soil headspace		d using TEI ma	odel 58	0B photoion	nization detector (PID) referenced to benz	izene in air. Readings shov	wn in parts per million	(com)		

LOG OF BORING CM-31

DRILLING CO	ane Manufacturing			FOREMA	N Bob	LOCATION:	Springfield, MA	PROJECT NO.: 0	076-22-04	
Seaboard I	Environmental Drilli	ng		HELPER	Ronnie	DATE STARTED 09/28/2009		DATE FINISHED		
DRILLING EQU	JIPMENT			11.12.11	romic .	COMPLETION DEPTH	<u> </u>	09/28/2009 GROUND SURFAC	NE ELEV	
TYPE BIT	m Auger Rig Hollow Stem	Augor	loize:	ATVOE OF		32.5'		DATUM		
CASING	Hollow Stelli	Auger	SIZE	& TYPE OF	CORE BARREL	No. Samples	7		UNDIST.	
CASING HAMA		WEIGHT	<u> </u>		DROP	TIME WATER LEVEL (FT.)		FIRST 10'	COMPL.	HR.
	O.D. Split Spoon	Rod A 1 5/8	" O.D.			BORING	Inside former Iron F	oundry, east central	6'	1 hi
SAMPLER HAMMER	Safety	WEIGHT 140 lbs.		DROP	l inc)	LOCATION			nod of prope	ity
			AMPLE	30" (Wire	Line)	ENGINEER/GEOLOGIST	Brin Thompson			
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	DESCRIP	TION		SOIL DESCRIPTION	REM/	ARKS
- - -		4/2/5/10	6/24	S-1 (1'-3')	6": CONCRETE Brown-black, fine to medium SAND Loose, brown, fine to medium SANI gravel, little silt, trace coarse sand,), some fine sub-angular		CONCRETE SAND		
- - - - -	5	6/7/11/16	14/24	S-2 (5'-7')	Medium dense, brown, medium to c sub-angular gravel, trace(-) fine san	oarse SAND, some fine d, trace(-) silt, dry				
-	10	4/6/7/17	16/24	S-3 (10'-12')	Medium dense, brown, coarse SANI gravet, trace(-) fine to medium sand,), some fine sub-angular trace(-) silt, wet				
	15	2/3/12/10	8/24	S-4 (15'-17')	Medium dense, brown, coarse SANE gravel, trace(-) fine to medium sand, (rock in tip)), some fine sub-angular trace(-) silt, wet				
	20	2/9/5/11	14/24	\$-5 (20'-22')	Medium dense, brown, coarse SAND trace(-) fine to medium sand, trace(-)	and fine GRAVEL, silt, wet		20' V SAND AND GRAVEL		
marks:	25	2/2/5/6 1	6/24	S-6 (25'-27')	Loose, brown, medium to coarse SAN sub-angular gravel, trace(-) fine sand	ID, some fine trace(-) silt, wet				

LOG OF BORING CM-31

Project No. 0076-22-04 SAMPLES PENETR. REC. SAMPLES DEPTH TYPE/ DESCRIPTION SOIL REMARKS FT. RESIST. IN. NO. DESCRIPTION BL/6IN. GLACIAL TILL 2/7/17/19 15/24 S-7 Medium dense, brown, medium to coarse SAND, little (30'-32') fine sub-angular gravel, trace(-) fine sand, trace(-) slit, wet End of exploration at 32.5

LOG OF BORING CM-3	2	-3	í -	λ	٨	:	C		G	۷	ľ	R	O	В	F	0	G	0.	L
--------------------	---	----	------------	---	---	---	---	--	---	---	---	---	---	---	---	---	---	----	---

						<u>•</u>		Pag	e <u>1</u> OF	11_
PROJECT: C	rane Manufacturing	L				LOCATION:	Springfield, MA	PROJECT NO. :	1070 00 04	
Sooboord	ONTRACTOR Environmental Dril			FOREMAN	Rob	DATE STARTED	Opraigheid, MA	DATE FINISHED	0076-22-04	
DRILLING EQ	HIPMENT	ling		HELPER	Ronnie		09/29/2009			
Hollow Ste	em Auger Rig					COMPLETION DEPTH		GROUND SURFA	CE ELEV.	
YPE BIT	Hollow Sterr	Auger	SIZE	&TYPE OF (ORE BARREL	7.5' No. Samples		DATUM		
ASING			1			TIME	3	rib em	UNDIST.	
CASING HAM	М. O.D. Split Spoon	WEIGHT			DROP	WATER LEVEL (FT.)		FIRST 3'	COMPL.	HR.
AMPLER . 2	Safety	Rod A 1 5/8 WEIGHT	O.D.	L DDOD		BORING	Center east, in Mad	chine Shop near Mox	on St.	
IAMMER		140 lbs.		DROP 30" (Wire L	ine)	LOCATION				
			AMPLE	S	1	ENGINEER/GEOLOGIST	Brin Thompson			
SAMPLES	DEPTH	PENETR.		TYPE/	DESCRIPTION	ON	FIELD	SOIL		
	FT.	RESIST.	IN.	NO.	†		MEASUREMENTS	DESCRIPTION	REMA	RKS
		BL/6 IN.		 	08. DL -1. 6					
	_			1	6": Black, fine to medium SAND, coal, 6": CONCRETE	ash, fine gravel	0.3	FILL		
. 🔽		4/3/2/6	8/24	S-1	Loose, brown-red, fine to medium SAI	JD some silt	2.0	1' CONCRETE]	
- X]		(1'-3')	little fine gravel, wet at 3'	an, some siit,	0.0	GLACIAL TILL		
- / \	<u> </u>	ļ]						ì	
\leftarrow	 	E (E IE IE	00/04							
· \/	-	5/5/5/5	20/24		Loose, brown-red, fine to medium SAN	iD, some silt, little	0.0			
$\overline{}$			1 1	(3'-5')	fine gravel, trace coarse sand, wet					
	5]						1	
. \ /	<u></u>	17/25/31/	14/24	S-3	Top 4": Dense, brown-red, fine to med	ium SAND some ellt	0.0	1 1		
- X		50 for 3"		(5-7)	little fine gravel, trace coarse sand, we	t	0.0	6' ↓		
\cdot $/$ \setminus					Bottom 10": Very dense, brown, fine to	medium SAND, little silt,		SAND		
	<u> </u>				trace coarse sand, wet					
<u> </u>					Auger refusal at 7.5' End of exploration at 7.5'	···		+	<u> </u>	
]		End of exploration at 7.5					
								•		
	├— l	J								
- i	10		1	İ					}	
						*	i			
		Í								
İ		ĺ	1							
		ĺ								l
-										
	15	1	ı							- 1
Į.			ł							İ
		· [-	ļ						
ŀ										
- h		- 1	ı							
_ [- 1	Ī						
ļ		1				İ				ļ
-				- 1						
F		1	- 1			1				i
- F				ł				1.0		F
- [- 1							
ļ				-		i]	•	1
- -		1	- 1	i						ı
				-		ļ				
·		1				ĺ		ļ		- 1
.		j								ľ
		- 1				ļ	ļ			
. [25	ŀ	ĺ]	ļ		J
	1]		ļ				ł		ľ
·				ĺ						
	-						i	l		j
parker						l		j		í

1. Soil head space screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

LOG OF BORING CM-33

-										raye	,— <u> </u> —	<u> </u>
ROJECT: C	rane Ma	nufact	uring					LOCATION:	Springfield, MA	PROJECT NO.: 0	070 00 04	
PRILLING CO						FOREMA	N Rob	DATE STARTED	Oprangilicia, IVIA	DATE FINISHED	076-22-04	
Seaboard ORILLING EQ	Environ	menta	Drill	ing		HELPER	Ronnie	09/29/2009		09/29/2009		
Hollow Ste								COMPLETION DEPTH		GROUND SURFAC	CE ELEV	
YPE BIT			Stem	Auger	ICI7E	PTYDE OF	CODE DADDE	13'		DATUM		
CASING		011077	oto III	Augei		ATTPE OF	CORE BARREL	No. Samples	6		UNDIST.	
ASING HAM	M.		-	WEIGHT	_1		DROP	TIME		FIRST	COMPL.	HR.
SAMPLER: 2"	O.D. Sp	lit Spo	on	Rod A 1 5/8	"O.D.		BROF	WATER LEVEL (FT.) BORING		6.5'		
AMPLER	Safety			WEIGHT		DROP		LOCATION	Machine Shop near	Iron Foundry		
AMMER				140 íbs.		30" (Wire I	ine)	ENGINEER/GEOLOGIST	Brin Thompson	· · · · · · · · · · · · · · · · · · ·		
	l _				AMPLE	28		I TOTAL CENT OF OCCUPANT	Dills (nonapson			
SAMPLES		EPTH		PENETR.		TYPE/	DESCRIPTION	ON	FIELD	SOIL		0140
		FT.		RESIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION	REMA	RKS
	┼			BL/6 IN.	ļ	ļ				OLCONII NON		
-						1	4": CONCRETE			CONCRETE		
		-		~/40/	1		8": Brown, fine to medium SAND, fine	gravel, dry		FILL	ĺ	
· \ /	\vdash			7/10/5/5	10/24		Top 6": Medium dense, brown, mediur	m to coarse SAND, some	0.0			
- X		-	_			(1'-3')	fine gravel, trace(-) fine sand, trace(-)	silt, dry				
							Bottom 4": Medium dense, dark brown	i, fine to medium SAND,				
	}			5/5/6/7	14/24	S-2	some silt, trace wood, dry		ł	3' +		
				O O O O O O	14/24	(3'-5')	Medium dense, brown, medium to coa	rse SAND, some fine	0.0	SAND AND		
_ 🔨		-	_		1	(3-0)	gravel, trace fine sand, trace silt, moist	t		GRAVEL		
		5]				ļ			
$\overline{}$	Ť	•		9/13/20/24	16/24	S-3	Dense, brown, medium to coarse SAN	D	ĺ			
_					10/21	(5'-7')	gravel, trace fine sand, trace silt, moist	D, some fine	0.0			
		•				(2)	graver, trace line samu, trace siil, morst	to wet at 6.5	<u> </u>			
			l		i l							
	L	,	\neg	17/20/23/39	6/24	S-4	Dense, brown, coarse SAND and fine (CDAVEL Balasia				
- 🗸						(7'-9')	to medium sand, trace silf, wet	GRAVEL, IIIIIE IIIIE	0.0			
	<u> </u>					, ,	mount barra, trace ont, wet			į ·		
									i			
\setminus \angle	 _		- 1	6/8/11/13	14/24	S-5	Medium dense, brown, medium to coar	۸۸			ĺ	
- X I	L	10				(9'-11')	gravel, trace(-) fine sand, trace(-) silt, d	0.0				
	<u> </u>		- 1	-	1		, (, a.i.a, a.a.ba(,) oile, q	• •				1
\leftarrow			_									
			- 1	9/11/16/17	24/24	S-6	Medium dense, brown, medium to coar	se SAND, some fine	0.0			
- X I			_			(11'-13')	gravel, trace(-) fine sand, trace(-) silt, w	et	0.0			1
$\angle X$			- 1		J		,			ļ i		- 1
										. ↓		
ŀ			- 1				End of exploration at 13 ¹					
- }			\dashv	İ	i					1		- 1
ŀ	·····	15										Ī
- }		10			- 1							
ł					ľ				l			- 1
⁻			-1]	i				ŀ		Ì
.				- 1	- 1	ļ						
Ī									1			ļ
. [1		- 1			1	1		- 1
ĺ			\neg			ĺ						ł
. [ļ		ł			ļ			
		•	\neg	i	j	ľ						- 1
		20			- 1	ļ			l			- 1
Ļ		•	7	-	- 1	İ			l			
		_		[j			ļ			
L								1	Ì			1
. L			\Box	- 1		1						Ī
<u> </u> _			ļ									
ļ		_	_	- 1	- 1	1		, [ł			
				- 1				İ				- 1
-			_	1						1		1
			Ì	ŀ		i				ĺ		- 1
		25						1	f			- 1
-				- 1	- 1							- 1
⊢		_				- 1				1		j
<u> </u>				,				ł]]
iarks:				L						1		J

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

LOG OF BORING CM-3	4	
--------------------	---	--

					EOG OF BOILING CIN-34	<u>. </u>		Page) 1 OF 1
	rane Manufacturing	g				LOCATION:	Springfield, MA	PROJECT NO.: 0	076.22.04
DRILLING COI		****		FOREMAN		DATE STARTED	opringhold, this	DATE FINISHED	010-22-04
DRILLING EQU	Environmental Dri	iling		HELPER	Ronnie	09/29/2009		09/29/2009	
Hollow Ste	em Auger Rig Hollow Ster	m Augus	Torre	etype of	00DE 010DE	COMPLETION DEPTH 13'		GROUND SURFAC DATUM	
CASING		II Augei	PIZE	&IYPE Ur i	CORE BARREL	No. Samples	6		UNDIST.
CASING HAMI	И	WEIGHT	ь	,	DROP	TIME WATER LEVEL (FT.)		FIRST	COMPL. HR.
	O.D. Split Spoon		" O.D.			BORING	East central portion	of site, in former	L
SAMPLER HAMMER	Safety	WEIGHT 140 lbs.		DROP 30" (Wire L			Machine shop near f Brin Thompson	ormer iron foundry a	ind Moxon Street
SAMPLES	DEPTH		AMPLE						
GAWII LLG	FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	NO.	DESCRIPTI	ION	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
- - -		17/20/26/21	16/24	S-1 (1'-3')	Auger through wood 6": Black, fine to medium SAND, silt, fi Top 4": Dense, brown, fine to medium Bottom 12": Dense, brown, medium to fine gravel, trace fine sand, trace(-) silt	SAND and SILT, dry coarse SAND, some	6.3	WOOD FILL 1.5' SAND AND GRAVEL	
		11/11/13/18	20/24	\$-2 (3'-5')	Medium dense, brown, medium to coal gravel, trace(-) fine sand, trace(-) silt, r	rse SAND, some fine moist	0,0		3'
-	5	18/31/32/31	10/24	S-3 (5'-7')	Very dense, brown, medium to coarse gravel, trace(-) fine sand, trace(-) silt, r	SAND, some fine noist	0.0		
		12/17/14/14	14/24	S-4 (7'-9')	Dense, brown, medium to coarse SANI trace fine sand, trace(-) silt, wet	D, some fine gravel,	0,0		
	10	10/11/10/9	18/24		Medium dense, brown, medium to coar trace fine sand, trace(-) silt, wet	rse SAND, some fine gravel,	0.0		
-X		9/8/9/8	24/24	S-6 (11'-13')	Medium dense, brown, medium to coar trace fine sand, trace(-) silt, wet	se SAND, some fine gravel,	0.0		
					End of exploration at 13'			+	
_ - -	15								
· — ·									
-									
- [20							1	l
- -									,
-		}			i				
- - - -	25	-							

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm) 2. Well at 13' below ground surface, screen 13'-3', solid PVC riser 3' to above ground surface. Sand pack 13'-2', bentonite clay 2'-1', standpipe cernented in place.

LOG OF	BORING	CM-35
--------	--------	-------

DRILLING CONTRACTOR Seaboard Environmental Drilling DRILLING EQUIPMENT Hollow Stem Auger Rig TYPE BIT. Hollow Stem Auger CASING CASING CASING HAMM. WEIGHT DROP SAMPLER: 2" O.D. Split Spoon Rod A 1.5/8" O.D. SAMPLER SAMPLES DRILLING CONTRACTOR FOREMAN Rob DATE STARTED 09/29/2009 COMPLETION DEPTH 15' DATUM GROUND SURFACE ELEV. DATUM FIRST COMPL. TIME FIRST COMPL. SOMPLETCH BORING East central portion of site LOCATION ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. IREC. TYPE/ PENETR. IREC. TYPE/ DROP DATE STARTED 09/29/2009 COMPLETION DEPTH 15' DATUM FROUND SURFACE ELEV. DATUM AVAICABLE STARTED 09/29/2009 09/		Crane Manufacturing	g.				TI OCATION:	Control MA			"— <u> </u>
DRILLING DRILLING	DRILLING CON	ONTRACTOR					LOCATION: DATE STARTED	Springfield, MA	PROJECT NO. : . UI	Ĵ76-22-04	
Hollow Stem Auger Right	DRILLING EO	Environmental Drift N IIPMENT	<u>iling</u>		HELPER	Ronnie	09/29/2009	***	09/29/2009		
Mo. Samples	Hollow Ster	tern Auger Rig			·				GROUND SURFAC	JE ELEV.	
CASHING SAMPLER SAMPLES SAMP		Hollow Stem	ı Auger	SIZE (&TYPE OF	CORE BARREL	No. Samples	_7	DATOW	UNDIST.	
SAMPLER Safety	CASING HAMM	íM.	WEIGHT	ь		Indab					HR.
HAMMER DOT 140 lbs DOT DOT DOT	SAMPLER: 2" (O.D. Spilt Spoon	Rod A 1.5/8"	".O.D.	<u> </u>		BORING	Fast central portion			Ι
SAMPLES DEPTH PENETR, REC. TYPE DESCRIPTION FIELD SOIL RESIST, IN. NO. BL/8 IN. NO.		Safety					LOCATION		OI. Site		
SAMPLES DEPTH FT. REC. TYPE/ RESIST, BU/8 IN. NO. NO. 14": CONCRETE 14": CONCRETE 14": CONCRETE 14": CONCRETE 14": CONCRETE 14": CONCRETE 14": CONCRETE 15/20/20/20 10/24 S-2 Gravel, ittlise coarse gravel, trace(-) fine sand, trace(-) silt, dry 0.0 GRAVEL 15/24 S-4 (7-9) 15/24 S-5 (9-11) 15/24 S-6 (11-13) 15/24 S-7 (13-15)		T				_ine)	ENGINEER/GEOLOGIST	Brin Thompson			
4/7/11/16 8/24 S.1 (1°-3)	SAMPLES		PENETR. RESIST.	REC.	. TYPE/	DESCRIPT	ION			REM/	ARKS
### Addium dense, brown, medium to coarse SAND, some fine gravel, little coarse gravel, trace(-) silt, dry 19/20/20/20			7			14": CONCRETE	<u> </u>	1	CONCRETE	 	
10 10 20/24 3-3 (5-7) 20/24 3-3 (5-7) 27/ 50 for 4* 15/24 5-5 (9'-11') 18/24 5-6 (11'-13') 18/24 7/8/11/13 20/24 7/8/11/13 20/24 15/24 15/24 3-7 (13'-15') 15/24	-		4/7/11/16	8/24		Medium dense, brown, medium to coa	arse SAND, some fine ie sand, trace(-) silt, dry	1	1' ↓ SAND AND		
20/26/27/30 10/24 S-3 (6'-7') gravel, little coarse gravel, trace(-) sint, dry 27/ 50 for 4* 15/24 S-5 (9'-11') gravel, little coarse gravel, trace(-) silt, dry 10 4/7/11/12 18/24 S-6 (9'-11') gravel, little coarse gravel, trace(-) silt, dry 7/4/6/5 20/24 S-6 (11'-13') little fine sand, trace silt, wet 7/8/11/13 20/24 S-7 (13'-15') Medium dense, brown, medium to coarse SAND, some fine gravel, little fine sand, trace silt, wet End of exploration at 15'		5	19/20/20/20	10/24		Dense, brown, medium to coarse SAN gravel, little coarse gravel, trace(-) fin	√D, some fine .e sand, trace(-) silt, dry	0.0			
50. for 4" (7-9') little coarse sand, trace(-) silt, dry 4/7/11/12 18/24 S-5 (9'-11') Medium dense, brown, medium to coarse SAND, some fine gravel, little coarse gravel, trace(-) fine sand, trace(-) silt, wet 7/4/5/5 20/24 S-6 (11'-13') little fine sand, trace silt, wet 7/8/11/13 20/24 S-7 (13'-15') Medium dense, brown, medium to coarse SAND, some fine gravel, little fine sand, trace silt, wet End of exploration at 15'	-		20/26/27/30	10/24		Very dense, brown, medium to coarse gravel, little coarse gravel, trace(-) find	s SAND, some fine e. sand, trace(-) slit, dry	0.0			
7/4/5/5 20/24 S-6 (11'-13') Gravel, little coarse gravel, trace(-) fine sand, trace(-) silt, wet 0.0	-			15/24	S-4 (7'-9')	Very dense, brown, fine to medium SA little coarse sand, trace(-) silt, dry	ND, some gravel,	0.0			
7/8/11/13 20/24 S-7 (13'-15') Ittle fine sand, trace silt, wet Medium dense, brown, medium to coarse SAND, some fine gravel, little fine sand, trace silt, wet End of exploration at 15'		10 _			(9'-11')	gravel, little coarse gravel, trace(-) fine	e sand, trace(-) silt, wet	0.0		F	
(13'-15') // Ittle fine sand, trace silf, wet					(11'-13')	little fine sand, trace silt, wet				j	
		15	//8/11/10	. t	(13'-15')	little fine sand, trace silt, wet	se SAND, some fine gravel,	0.0		I	
	- [- - -					Entrol exploration at 15		; 			
	- - - - -										
	- -										
	-	25							37 - 18-7 18-7		
temarks: 1. Soll headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)											

LOG	OF	BORING	CM-36
	Ψ 1.		🕶 191"-30

PROJECT: Cr	ane Manufacturing					LOCATION				
DRILLING CO	NTRACTOR			FOREMA	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO. : 0	076-22-04	
Seaboard I	Environmental Dril	ling		HELPER	Ronnie	09/30/2009		DATE FINISHED 09/30/2009		
DRILLING EQU						COMPLETION DEPTH		GROUND SURFA	CE ELEV	
TYPE BIT	m Auger Rig Hollow Stem	A	Tolar	471/05 05		15'		DATUM	OL LLEV.	
CASING	FIGHOW OLEH	Muger		&IYPE OF	CORE BARREL	No. Samples	7		UNDIST.	·
CASING HAMA	И.	WEIGHT	<u></u>		DROP	TIME		FIRST	COMPL.	HR.
	O.D. Split Spoon	Rod A 1 5/8	" O.D.		1-1-0-	WATER LEVEL (FT.) BORING	Northeast of former	9°		
SAMPLER	Safety	WEIGHT		DROP		LOCATION	between building ar	iloli roungry, d madway		
HAMMER	T	140 fbs.	A SAIGE F	30" (Wire	Line)	ENGINEER/GEOLOGIST	Brin Thompson	loadinay	T	
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC.	TYPE/ NO.	DESCRIPTIO		FIELD MEASUREMENTS	SOIL DESCRIPTION	WELI CONSTRU	
- - -		4/5/13/20	14/24	S-1 (1'-3')	4": ASPHALT Brown-black, fine to medium SAND, fin Top 4": Medium dense, brown-black, fi some slit, trace wood, dry Bottom 10": Medium dense, brown, fine some slit, dry	ne to medium SAND,	0.0	ASPHALT FILL		
	5	16/16/16/10	16/24	S-2 (3'-5')	Top 8": Medium dense, brown, fine to r silt, dry Bottom 8": Medium dense, brown-black some coal ash, some silt, dry		0.0			
		9/10/13/21	8/24	S-3 (5'-7')	Medium dense, dark brown, fine to med silt, trace coal ash, trace coarse sand,	dium SAND, some dry	0.0		5'	
		17/16/12/11	14/24	S-4 (7'-9')	Medium dense, brown, medium to coar gravel, trace(-) fine sand, trace(-) silt, d	se SAND, some fine	0.0			
X	10	3/4/7/15	3/24	S-5 (9'-11')	Medium dense, brown, medium to coar fine sand, trace(-) silt, wet	se SAND, trace	0.0	g' ↓ SAND		
\sim		13/17/27/26	12/24	S-6 (11'-13')	Top 4": Medium dense, brown, medium trace fine sand, trace(-) silt, wet Bottom 8": Dense, gray, medium to coa fine gravel, trace fine sand, trace(-) silt,	rse SAND. little	0,0			
\times		5/6/7/13	16/24	S-7 (13'-15')	Medium dense, brown-gray, medium to fine sand, trace(-) silt, wet	coarse SAND, trace(-)	0.0			
					End of exploration at 15'				339944944 44 	
						:	į			:
_	20									
- -			į					7.00		
-										
-	25									
								İ		

Remarks:

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

2. Coarse gravel (greater than 1 1/2") observed in auger cuttings from approximately 11'.

3. Well at 15' below ground surface, screen 15'-5', solid PVC riser 5' -2.5' above ground surface. Sand pack 15'-3', bentonite clay 3'-1', sand to grade, standpipe cemented in place

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-37 Page __ 1 OF 1 PROJECT: Crane Manufacturing DRILLING CONTRACTOR Springfield, MA PROJECT NO.: 0076-22-04 OREMAN Rob DATE STARTED Seaboard Environmental Drilling DATE FINISHED HELPER Ronnie 09/30/2009 DRILLING EQUIPMENT 09/30/2009 Hollow Stem Auger Rig COMPLETION DEPTH GROUND SURFACE ELEV. TYPE BIT Hollow Stem Auger DATUM SIZE &TYPE OF CORE BARREL No. Samples CASING UNDIST CASING HAMM. WEIGHT FIRST COMPL HR. DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D. BORING Approximate area of former USTs #1-4 Safety WEIGHT DROP HAMMER LOCATION 140 lbs. 0" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC DESCRIPTION **FIELD** FT. RESIST. SOIL WELL NO. MEASUREMENTS BL/6 IN. DESCRIPTION CONSTRUCTION Black, fine to medium SAND, coarse gravel FILL 7/11/13/17 18/24 Medium dense, brown, fine to medium SAND, some silt, S-1 0.0 (1'-3')trace coarse sand, dry 13/13/14/14 4/24 S-2 Medium dense, brown, medium to coarse SAND, little fine 0.0 (3'-5')sand, little coal ash, trace silt, dry 9/7/4/3 8/24 S-3 Medium dense, black, medium to coarse SAND, some coal 0.0 (5'-7')ash, little fine sand, trace silt, dry 3/2/2/1 14/24 S-4 Loose, black, medium to coarse SAND, some coal 0.0 (7'-9')ash, little fine sand, trace silt, wet Weight of 18/24 Very loose, black, medium to coarse SAND and ORGANICS, S-5 0.0 **ORGANICS** rod/24" (9'-11') little coal ash, little silt, little fine sand, wet 2/5/7/43 6/24 S-6 Medium dense, black, medium to coarse SAND and 0.0 (11'-13')ORGANICS, little silt, little fine sand, wet (wood in tip) 131 7/10/10/10 14/24 S-7 Medium dense, brown; medium to coarse SAND, little fine 0.0 SAND (13'-15') gravel, trace fine sand, trace(-) silt, wet End of exploration at 15'

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

^{2.} Well at 15' below ground surface, screen 15'-5', solid PVC riser 5' -2.5' above ground surface. Sand pack 15'-3', bentonite clay 3'-1', sand to grade, standpipe cemented in place

LOG OF BORING CM-38

PROJECT: Cr			ring					LOCATION:	Springfield, MA	PROJECT NO.: 0	076_22_04
DRILLING CO			~ ±00.			FOREMA		DATE STARTED	Cpringhold,,	DATE FINISHED	U/0-22-04
Seaboard DRILLING EQ	CUALOUI	nentai i	Dulin	1g		HELPER	Ronnie	10/01/2009		10/01/2009	
Hollow Ste								COMPLETION DEPTH		GROUND SURFAC	OF FLEV
TYPE BIT		ollow St	tem	Auger	10/75	PTYDE OF	AAAA BAAAA	17*		DATUM	
CASING		Mon C.	USE III	-tugoi	- SIZE	CHIPE OF	CORE BARREL	No. Samples	6'		UNDIST.
CASING HAMI	Л.			WEIGHT	ــــــــــــــــــــــــــــــــــــــ		DROP	TIME		FIRST	COMPL. HR.
SAMPLER: 2"	O.D. Spli	t Spoo	n	Rod A 1 5/8"	" O.D.		_DROP	WATER LEVEL (FT.)		9'	
SAMPLER	Safety	<u>,</u>		WEIGHT		DROP		BORING	West central portion	of site, near Pineval	le Street
HAMMER			\perp	140 lbs.		30" (Wire	Line)	LOCATION ENGINEER/GEOLOGIST	F Dela Thomason		
					AMPLE		T -	ELAGNACTIAGEOFOCIO	Brin Thompson		
SAMPLES		EPTH FT.		PENETR, RESIST. BL/6 IN.	REC. IN.	. TYPE/ NO.	DESCRIPTIO	N	FIELD MEASUREMENTS	SOIL DESCRIPTION	WELL CONSTRUCTION
	<u> </u>		1	I			4": CONCRETE 6": Black, fine to coarse sand, debris ((concrete brick)	3.0	CONCRETE	*****
			\neg	1			fine gravel	concrete, bricky,	0.0	FILL	
			_1	1		ļ	12": Brown, medium to coarse SAND,	fine grovel day	1		
			\neg	1	1		38": Brick	inte graver, dry	0.0		
				1	'				ļ		
_ '				1	1	1	1				Statement street
·				!	'	1	ļ		1	l., ↓	
			\neg	1	1 1	ł				4' *	
		5	1	1	1 1	t	-]	SAND AND	
		-	7	11/11/13/14	NR	S-1	Rock in tip		1	GRAVEL	5
_ \/ !				1	1 1	(5'-7')	T CONCAT UP		,		
_ /\ !		-		J	I = I	(- ' /					
				1	i = l			2]		
		•	71	13/11/11/14	4/24	S-2	Medium dense, brown, medium to coar	ma ¢∧MD sama	1		
_ \				, j	1	(7'-9')	fine gravel, trace fine sand, trace(-) silt,	ISE SAIND, SOME	0,0	i [[
		-	\neg	1	i 1	1 3 7	inie graver, trace tilie satio, trace(-) siit	, wet at 9]		
			- 1	l	, J	l .			į į	i ↓	
		-	1	12/12/12/13	18/24	S-3	Modium donor dock group fine to modi	0.1400 mg mg 1	i .	9'	
~ \ / [10	- 1	2,2,12,12	10,2-	(9'-11')	Medium dense, dark gray, fine to media	um SAND, littre silt,	113	SAND	
$^{-}$ \wedge $^{+}$			\dashv		. J	(9-11)	trace coarse sand, wet (Odor)	•]	. 1	
· / \h			- [1	. 1	i	1	į	!	. ! !	
\leftarrow		-	-1,				<u></u> †·		i		
・\/ト			-11	1/12/13/16	24/24	S-4	Top 14": Medium dense, dark gray, fine	e to medium SAND,	120		
X +		-	4	i	ĺ	(11'-13')	little silt, trace coarse sand, wet (Odor)		l ,	.	
· / \]	ı	Bottom 10": Medium dense, brown, fine	to medium SAND,	ĺ		
\leftarrow		_	_		1		little silt, trace coarse sand, wet		i I	13' ↓	
· \ /				9/8/9/11	8/24	S-5	Medium dense, brown, medium to coars	se SAND, some	7.6	SAND AND	
- X ŀ		_	_	1	1	(13'~15')	fine gravel, trace(-) fine sand, trace(-) si	ilt. wet	i ' i	GRAVEL	
- / \ \ !			1	1	1			,		GRAVEL.	
\leftarrow		15 _		1	1	ļ	Í		1		
			7	6/9/8/7	14/24	S-6 (15'-17')	Medium dense, brown, medium to coars	se SAND, some fine	2.0		15
_ / \		_	7		- 1	(10-11)	gravel, trace fine sand, trace silt, wet	i			
	_		1	i i	- 1	1	1	l	 	1 1	
			┦	1		,	F			*	
<u> </u> -	_			1	- 1	ŗ	End of exploration at 17'				
_		_	-	ı	ı		l .				र्वे व
·				1		ļ	·				
- H		_	-1	1	F	1	1	J		I	
⊢		20		I		ļ	i			1	
~ -		²⁰ –	4	ļ	- 1	J	1				
F			1			1	ı		i		
~ -		_	┙	1	- 1	J					
H			İ	1		J		1		1	
- L		_	╛]		į	ı			Ī	
<u> </u>			ļ	1	1	J			Ī		:
- [_		_	_			J					
L.			1	1	- 1	i		1		1	
- L		***		ŀ	- 1			1	1	1	
L			7		- 1	1		Ī	1		
		25	1	1		i		1	1		
		_	1	İ				1	1	1	
			1	Į		- 1		1	1	1	
- <u> </u>		_	-		ľ	- 1		i	Į.	I	
<u> </u>	_		Ì	- 1		1		• [1	1	;
marks:			Щ.							1	i
	o coreer	4 : 1	5010	·····							
2. Well at 15' bel	ow grou	nd surf	face,	screen 15'-{	odel obi 5', solid	0B photolor PVC riser	nization detector (PID) referenced to ben 5' -2.5' above ground surface. Sand pack	nzene in air. Readings sho k 15'-3', bentonite clay 3'-∕	wn in parts per millior I', sand to grade, stan	ւ (ppm) dpipe cemented in բ	olace

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CN	1-39
------------------	------

1 OF 1 PROJECT: Crane Manufacturing LOCATION: Springfield, MA PROJECT NO.: 0076-22-04 DRILLING CONTRACTOR FOREMAN Rob DATE STARTED Seaboard Environmental Drilling DATE FINISHED HELPER Ronnie 10/01/2009 10/01/2009 DRILLING EQUIPMENT COMPLETION DEPTH GROUND SURFACE ELEV. Hollow Stem Auger Rig 161 DATUM TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING UNDIST TIME CASING HAMM FIRST COMP HR. WEIGHT DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D. BORING SAMPLER Eastern Machine Shop near Pinevale Street Safety DROP LOCATION HAMMER 30" (Wire Line) 140 lbs ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC DESCRIPTION FIELD SOIL WELL FT. RESIST. NO. MEASUREMENTS DESCRIPTION CONSTRUCTION BL/6 IN. 6/12/16/18 10/24 Medium dense, brown-black, fine to medium SAND, some FILL (0-2')debris (red brick), little silt, little wood, trace silt, dry 26/21/11/13 4/24 S-2 Dense, red, BRICK, little wood, dry 0.0 (2'-4')(Brick to 5') 4/2/3/4 NR S-3 No Recovery (5'-7') 6/11/11/26 18/24 S-4 Medium dense, brown, medium to coarse SAND, little fine 0.0SAND (7'-9')sand, trace silt, wet 10/11/11/14 16/24 S-5 Medium dense, brown, medium to coarse SAND, little fine 0.0 (9'-11') sand, trace silt, wet 12/13/13/17 24/24 5-6 Medium dense, brown-orange, medium to coarse SAND, 0.0 SAND AND (11'-13') some fine gravel, trace fine sand, trace sitt, wet GRAVEL 6/8/9/11 24/24 S-7 Medium dense, brown-orange, medium to coarse SAND, 0.0 some fine gravel, trace fine sand, trace siit, wet (14'-16') End of exploration at 16' ₹emarks:

1. Soil headspace screened in field using TE! model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

2. Well at 14' below ground surface, screen 14'-4', solid PVC riser 4'-2.5' above ground surface. Sand pack 14'-2', bentonite clay 2'-0.5', sand to grade, standpipe cemented in place

LOG OF BORING (:M-40	
-----------------	-------	--

PROJECT: Cr	ane Manufacturing]				LOCATION:	Springfield, MA	PROJECT NO.: 0	076-22-04	
DRILLING COI Seaboard	NTRACTOR Environmental Drif	lina		FOREMAN HELPER		DATE STARTED		DATE FINISHED.	770-22-04	
DRILLING EQU	JIPMENT	ing		literation	Ronnie	10/01/2009 COMPLETION DEPTH		10/01/2009 GROUND SURFAC	e el evi	
TYPE BIT	m Auger Rig Hollow Sten	a Augor	ICIZE 6	TVDE OF	ORE BARREL	8'		DATUM	· L L L L V .	
CASING		i Augoi	JOIZE	STIPE OF L	ORE BARREL	No. Samples	4	FIRST	UNDIST.	
CASING HAMI	/l. O.D. Split Spoon	WEIGHT			DROP	WATER LEVEL (FT.)		NE	COMPL.	HR.
SAMPLER	Safety	Rod A 1.5/8 WEIGHT	O.D.	DROP		BORING	South east portion o	f site near former US	Ts	
HAMMER .		140 lbs.		30* (Wire L	ine)	LOCATION ENGINEER/GEOLOGIS	F Brin Thompson	Γ		
SAMPLES	DEPTH	PENETR.	AMPLE	S TYPE/	- DECORPORATE			1.		
	FT.	RESIST. BL/6 IN.	IN.	NO.	DESCRIPTIO		FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	RKS
		4/6/11/13	8/24	S-1 (0-2')	Medium dense, brown-black, wood (n medium SAND, little brick, dry	nulch), little coarse to	0.0	FILL		
								.]		
_ \ /		18/24/20/19	8/24	S-2	Dense, red, BRICK, dry		0.0			
		-		(2'-4')						
						•				
<u> </u>										
	5 _	17/16/	8/24	\$-3	Very dense, red, BRICK, dry					
_ 🗙		50 for 4"	0,2,4	(5'-7')			0.0	.	٠.	•
- / 🖊										
		2/	1/24	S-4	Very dense, brown, coarse SAND and	WOOD	0,0			
$- \times 1$		50 for 2"	1	(7'-9')	(wood in tip)		. 0,0			
- / \	 · .						•	. ↓		
					Auger refusal, end of exploration at 8'	· · · · · · · · · · · · · · · · · · ·				
	10									
-						e e me				
- }			-			*		-		
								į		•
-	 ,"					-	·	·		
_ [_								
	15		1,2						P	
·		.								
		·								
-	<u> </u>			ŀ						
_ [-		- 1						
	_ ~ ~	[.								
<u> </u>				ł						
_ · [20	i		- 1						
·	-		,	j				,		
		- 1								
 -		ĺ	•	İ				İ		
		1	- 1	1						
<u> </u> _	-		.							ľ
- · -		- 1]"	gradient de la Merce de la Companya de la Companya de la Companya de la Companya de la Companya de la Companya La companya de la Companya de la Companya de la Companya de la Companya de la Companya de la Companya de la Co]		
	25	ł		1]	İ		
		}		ĺ						
_ [<u> </u>	j		- 1						İ
	· ·		ļ	ŀ			•			
emarks:							L			
i. ouii. rieadspac	æ screened in fiel	d using TEI m	odel 580	OB photoion	ization detector (PID) referenced to be	nzene in air. Readings sho	own in parts per millio	n (ppm)		1

LOG OF	BORING	CM-40A
--------	--------	--------

PROJECT: C	rane Manufacturing								eOr	⁾⁻ 1_
DRILLING CO	ONTRACTOR			FOREMAN	N Oak	LOCATION:	Springfield, MA	PROJECT.NO.:.00	076-22-04	
Seaboard I	Environmental Driffi	ling		HELPER	N. Rob Ronnie	DATE STARTED 10/28/2009		DATE FINISHED.		
DRILLING EQU	UIPMENT em Auger Rig				Tsering	COMPLETION DEPTH		10/28/2009 GROUND SURFAC	CE ELEV	
TYPE BIT.	em Auger Rig Hollow Stem	- Auger	ICI7F	OTVIDE OF	CORE BARREL	4'		DATUM DATUM		
CASING		Augei	-	& ITELOID	JOKE BARKEL	No. Samples TIME	2		UNDIST.	
CASING HAMA		WEIGHT			DROP	WATER LEVEL (FT.)		FIRST NE	COMPL.	HR.
SAMPLER: 2" (O.D. Split Spoon Safety	Rod A 1.5/8				BORING	South east portion of	of site near former US	QTq	<u> </u>
HAMMER.	Salety	WEIGHT 140 lbs.		DROP 30" (Wire L	l ing)	LOCATION		Lorso) i a	
		S.	SAMPLE	.ES	ille)	ENGINEER/GEOLOGIST	i Brin Thompson			
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC.	. TYPE/	DESCRIPTIO	ИС	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMA	ARKS
	<u></u>	2/2/3/3	12/24	4 S-1	Top. 8": MULCH, trace concrete, trace	- fine to madium cand	0.0			
FX'		1		1	trace silt, moist Bottom 4": Red BRICK, dry	. Пле то тнеового залот	0.0	FILL		
	 	1	1				1	1 '	1	
F \/'	 	7/8/9/22	12/24	4 S-2	Medium, red BRICK, trace concrete, d	dry	0.0	1 '		
上入 ′	 	1 '	1 '	(2'-4')			·	1 '	1	
		1 '	'				1	1 1 '	1	
L !	<u> </u>	1 1	1 '	1	End of exploration at 4'		+			
<u></u>	5 —	i 1	1	1 '		į	ļ <i>1</i>	1 '	1	
h)	<u> </u>	ı J	1	1 /	1	į	1	1		
		, 1	1 1	1 '	1	Ī	1	1	1	
<u> </u>		ı J	1)	1	1	,	1	<u> </u>	1	
⊢	<u> </u>	, ,	1 1	1 1	1	,	1	1 1	1	
-		. 1	1 1	1 1	1	Ī	1	1	İ	
_ -	<u> </u>	. J	1 1	f 1	1	Ī	1 1	i J	1	
		. 1	1 1	1 1	1	,	1)	1 1	1	
	10		(\cdot , \cdot)	t = -1	1		1	ı. J	1	
- }		1	6 1	1 1	ĺ	4	$1 \cdot \cdot $ 1	r ·	1	
-		1	(J	i = 1	1.	1	1 1	<i>i</i>	1	
- +		ĺ	1 1	1	1	Ţ	f : ; ; ; ;	i J	i .	
[1	ı J	i]	1	J	1 1	, ,	i	
<u> </u>		ĺ	. 1	<i>i</i>		J	()	, J	i	
		ŀ	<i>i</i>]		ı	,	()	, j	<i>i</i> .	
			, [1	j.	()	,	į.	
- <u>†</u>	15		.]	.]	1	1	4	.]	i	
_ [.	.]		i	J	<i>i</i> [.	i	
		Ī		1	i	J	1	.	i	
- F	- 1	1	.]	1		1			i	
- F	— —	1	. 1	1		ı	1		į	
<u> </u>		1		ľ		J	ı	1	ı	
- -		1	1	ł		Ī	,	1		
- J-		[1	i	[
·	20	[ľ			Ī				
- h		[1		1		
[Ī	- 1		1		1		
·]				1		
		1		- 1		1	1	1		
·	_						1	1		
- L]	- 1	1			Ī	1		
_ [- 1					1	İ		
· L	_ 7]	}	•		1	I		
- -	25		- 1			1	Į	1		
⊢	-		- 1	1		1		[
- ⊢			- 1			1		1		
	-			1		1]	1		
emarks:									·	
Soil headspace	a screened in field	using TEI mo	odel 58/	.0B photoion	nization detector (PID) referenced to ben	nzene in air. Readings sho	wn in parts per millior	ı (ppm)		

LOG OF BORING __CM-41

SAMPLER Safety	WEIGHT Rod A 1 5/8" (WEIGHT 140 lbs.	DROP	Ronnie	LOCATION: DATE STARTED 10/02/2009 COMPLETION DEPTH 14' No. Samples TIME	Springfield, MA	PROJECT NO.: 0 DATE FINISHED 10/02/2009 GROUND SURFAI DATUM	DE ELEV.
DRILLING EQUIPMENT Hollow Stem Auger Rig TYPE BIT Hollow Stem CASING CASING HAMM. SAMPLER: 2" O.D. Split Spoon SAMPLER HAMMER SAMPLES DEPTH	WEIGHT Rod A 1 5/8" (WEIGHT 140 lbs.	HELPER SIZE &TYPE OF D.D. DROP	Ronnie CORE BARREL	10/02/2009 COMPLETION DEPTH 14' No. Samples	7	10/02/2009 GROUND SURFA	
Hollow Stem Auger Rig TYPE BIT Hollow Stem CASING CASING HAMM. SAMPLER: 2" O.D. Split Spoon SAMPLER Safety HAMMER SAMPLES DEPTH	WEIGHT Rod A 1 5/8" (WEIGHT 140 lbs.	D.D. DROP		COMPLETION DEPTH 14' No. Samples	7	GROUND SURFA	
TYPE BIT Hollow Stem CASING CASING HAMM. SAMPLER: 2" O.D. Split Spoon SAMPLER Safety HAMMER SAMPLES DEPTH	WEIGHT Rod A 1 5/8" (WEIGHT 140 lbs.	D.D. DROP		No. Samples	7		
CASING CASING HAMM. SAMPLER: 2" O.D. Split Spoon SAMPLER Safety HAMMER SAMPLES DEPTH	WEIGHT Rod A 1 5/8" (WEIGHT 140 lbs.	D.D. DROP			7		
CASING HAMM. SAMPLER: 2" O.D. Split Spoon SAMPLER Safety HAMMER SAMPLES DEPTH	Rod A 1 5/8" (WEIGHT 140 lbs. SAI	DROP	DRÖP	LUME			UNDIST.
SAMPLER Safety HAMMER SAMPLES DEPTH	Rod A 1 5/8" (WEIGHT 140 lbs. SAI	DROP	EROF			FIRST	COMPL, HR.
SAMPLER Safety HAMMER SAMPLES DEPTH	140 lbs.			WATER LEVEL (FT.) BORING	Southeast portion of	8.5'	<u> </u>
SAMPLES DEPTH	SAI			LOCATION	with visible sheen ar	od a drainnine in the	north direction
		30" (Wire	Line)	ENGINEER/GEOLOGIST	Brin Thompson	a a a a a a a a a a a a a a a a a a a	Motor unection
l .	RESIST.	MPLES REC. TYPE/ IN. NO.	DESCRIPTIO	ON .	FIELD MEASUREMENTS	SOIL DESCRIPTION	WELL CONSTRUCTION
	BL/6 IN.	 	8": CONCRETE				
	7/8/8/8	16/24 S-1 (1'-3')	4": Brown, medium to coarse SAND, fi Medium dense, brown, medium to coa fine gravel, trace fine sand, trace silt, o	rse SAND, some	0.0	FILL	
5	10/9/7/14 1	(3'-5')	Medium dense, brown, medium to coa fine gravel, trace fine sand, trace silt, c	rse SAND, some dry	0.0		4
	17/26/31/40 1	4/24 S-3 (5'-7')	Top 4": Dense, brown, medium to coar some fine gravel, trace fine sand, trace Bottom 10": Very dense, brown-red, fir	e siit, dry ne to medium SAND and	0.0	£, ↓	
	47/32/27/42 1	4/24 S-4 (7'-9')	SILT, little fine gravel, trace(-) coarse s Very dense, brown-red, fine to medium fine gravel, trace(-) coarse sand, wet a	SAND and SILT, little	0.0		
10	5/6/8/10 1	8/24 S-5 (9'-11')	Top 6": Medium dense, brown, fine to r silt, wet Bottom 12": Medium dense, brown-red	. fine to medium SAND	0.0	9' V SAND 10' ↓ GLACIAL TILL	
	12/20/16/18 20	0/24 S-6 (11'-13')	some silt, little fine gravel, trace coarse Dense, brown-red, fine to medium SAN coarse sand, trace fine gravel, wet	sand, wet	0.0		
	8/14/ 5 50 for 1"		Very dense, brown-red, fine to medium coarse sand, trace fine gravel, wet Auger refusal at 14'	SAND, some silt, little	0.0	<u> </u>	
			Auger refusal at 14' End of exploration at 14'				

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

2. Well set at 14' below ground surface, screen from 14'-4', solid PVC riser 4' -2.5' above ground surface. Sand pack 14'-2', bentonite seal 2'-1', sand to grade, standpipe cemented in place

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-42

Page 1 OF PROJECT: Crane Manufacturing LOCATION: Springfield, MA PROJECT NO.: 0076-22-04 DRILLING CONTRACTOR FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling HELPER Ronnie 10/02/2009 10/02/2009 DRILLING EQUIPMENT COMPLETION DEPTH Hollow Stem Auger Rig GROUND SURFACE ELEV. DATUM TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING 6 UNDIST. TIME FIRST HR. CASING HAMM _COMPL WEIGHT WATER LEVEL (FT.) SAMPLER: 2" O.D. Spilt Spoon Rod A 1 5/8" O.D. BORING Central portion of Steel Foundry, near FUSRAP site SAMPLER Safety WEIGHT DROP LOCATION HAMMER 140 lbs. 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES DEPTH PENETR. | REC. TYPE/ DESCRIPTION FIELD SOIL WELL FT. RESIST. **MEASUREMENTS** DESCRIPTION CONSTRUCTION BL/6 IN. 10": CONCRETE CONCRETE 5/5/5/6 14/24 S-1 Medium dense, brown, medium to coarse SAND, some fine 0.0 SAND AND (1'-3')gravel, little coarse gravel, trace(-) silt, trace(-) fine sand, dry **GRAVEL** 7/11/11/14 12/24 S-2 Medium dense, brown, medium to coarse SAND, some fine 0.0 (3'-5')gravel, little coarse gravel, trace(-) silt, trace(-) fine sand, dry 10/14/9/7 8/24 S-3 Medium dense, brown, medium to coarse SAND, some fine 0.0 (5'-7')gravel, tittle coarse gravel, trace(-) silt, trace(-) fine sand, wet at 7' 14/15/17/21 19/24 S-4 Dense, brown, medium to coarse SAND, some fine gravel, 0.0 (7'-9')little coarse gravel, trace(-) silt, trace(-) fine sand, wet 5/6/8/9 14/24 S-5 Medium dense, brown, medium to coarse SAND, some fine 0.0 (9'-11') gravel, little coarse gravel, trace(-) silt, trace(-) fine sand, wet 6/7/10/11 16/24 S-6 Medium dense, brown, medium to coarse SAND, some fine 0.0 (11'-13')gravel, little coarse gravel, trace(-) silt, trace(-) fine sand, wet End of exploration at 14' Remarks:

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

2. 4' of concrete in first location, moved approximately 20 feet east of original location (possible footing)

3. Well at 14' below ground surface, screen 14'-4', solid PVC riser 4' -2.5' above ground surface. Sand pack 14'-2', bentonite clay 2'-1', sand to grade, standpipe cemented in place

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING	CM-43
---------------	-------

Page 1 OF 1 PROJECT: Crane Manufacturing Springfield, MA PROJECT NO.: 0076-22-04 DRILLING CONTRACTOR FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling HELPER Ronnie 10/02/2009 10/02/2009 DRILLING EQUIPMENT GROUND SURFACE ELEV. COMPLETION DEPTH Hollow Stem Auger Rig 33' DATUM TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples UNDIST. CASING COMPL. HŘ. CASING HAMM. WEIGHT DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D. BORING Southwest corner of former Brass Foundary Safety WEIGHT DROP LOCATION HAMMER 140 lbs 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES DEPTH PENETR. TYPE/ REC. DESCRIPTION FIELD. SOIL REMARKS FT. RESIST. IN. NO. **MEASUREMENTS** DESCRIPTION BL/6 IN. 10": CONCRETE CONCRETE 4/6/3/2 12/24 S-1 Loose, black, medium to coarse SAND, some fine to coarse 0.0 FINE TO (1'-3')sub-angular gravel, trace(-) fine sand, trace(-) silt, dry MEDIUM SAND 3/4/12/32 14/24 Medium dense, brown, fine to medium SAND, little coarse S-2 0.0 (5-7')sand, dry 10' 8/15/16/18 18/24 S-3 Dense, gray, medium to coarse SAND, some fine to coarse 131 SAND AND (10'-12') sub-rounded gravel, trace(-) fine sand, trace(-) silt, wet **GRAVEL** (Odor) 15 10/16/11/12 18/24 S-4 Medium dense, gray, medium to coarse sand, some fine 84.6 (15'-17') sub-angular gravel, trace(-) fine sand, trace(-) silt, wet 5/6/7/8 24/24 S-5 Medium dense, brown, medium to coarse SAND and fine 0.0 (20'-22')sub-angular GRAVEL, trace(-) fine sand, trace(-) silt, wet 6/8/16/18 16/24 S-6 Medium dense, brown, medium to coarse SAND and fine 0.0 (25'-27') sub-angular GRAVEL, trace(-) fine sand, trace(-) silt, wet

^{1.} Soll headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm) 2. Well set at 15' on 10/28/2009, Screen from 15'-5', Riser from 5'-2.5' above ground surface. Sand from 15'-3', bentonite seal from 3'-1', native cuttings to grade, stand pipe cemented in place

LOG OF BORING CM-43

Sheet 2 of 2

Project No. 0076-22-04 SAMPLES PENETR. REC.
RESIST. IN.
BL/6IN. SAMPLES DEPTH TYPE/ DESCRIPTION FIELD SOIL DESCRIPTION REMARKS FT. NO. MEASUREMENTS SAND AND GRAVEL 25/10/12/16 12/24 Medium dense, brown-red, fine to medium SAND and S-7 0.0 GLACIAL TILL (30'-32') SILT, little coarse sand, trace fine gravel, wet Auger refusal at 33' End of exploration at 33'

LOG	OF.	BORIN	G CM-44
-----	-----	-------	---------

PROJECT: C	rane Manufacturing	J				LOCATION:	Springfield MA	IDDO ISOT NO	CNO 00 01	
DRILLING CO.	INTRACTOR			FOREMAN	V. Rob	DATE STARTED	Springfield, MA	PROJECT NO. : . 0	076-22-04	
Seaboard	Environmental Drill	ling		HELPER	Ronnie	10/02/2009		DATE FINISHED 10/02/2009		
DRILLING EQ				-		COMPLETION DEPTH		GROUND SURFAC	E EI E\/	
TYPE BIT.	em Auger Rig		1-1-1-1-	·		12'		DATUM	JE ELEV,	
CASING	Hollow Stem	t Auger -	-ISIZE	&TYPE OF. (CORE BARREL	No. Samples	6		UNDIST.	
CASING HAM	iM.	WEIGHT	Ь		DROP	TIME		FIRST	COMPL.	HR,
SAMPLER: 2"	O.D. Split Spoon	Rod A 1.5/8"	" O.D		DROP	WATER LEVEL (FT.)		8'		
SAMPLER	Safety	WEIGHT	.0.2.	DROP		BORING LOCATION	East central portion	of site, near Pinevale	e Street	
HAMMER.	· · · · · · · · · · · · · · · · · · ·	140 lbs,		30" (Wire L	_ine)	ENGINEER/GEOLOGIST	Brin Thompson		1	
l			SAMPLE	ES		ENGINEER COLOROGIO.	DIR THORPSON			
SAMPLES	DEPTH	PENETR.	REC,		DESCRIPTIO	NC	FIELD	SOIL	REMA	RKS
1	FT.	RESIST.	IN.	NO.			MEASUREMENTS	DESCRIPTION	1,	lixixo
	/	BL/6 IN.	12004						ľ	
F \ /		11/7/6/7	3/24		Top 1": Medium dense, brown, fine to.	medium SAND and	0.0	FILL	····	
一人		- '	1	(0-2')	SILT (TOPSOIL)		i !			
トノヽ	<u> </u>	!			Bottom 2": Medium dense, black, med	ilum to coarse SAND	<u> </u>			
	十— —	11/13/12/12	5/24	S-2	and COAL ASH, dry	5415 WH.		2' †		
	-	11/19/19/19/19	0,2,		Medium dense, brown, medium to coa fine gravel, trace fine sand, trace(-) silt	rse SAND, rittle	0,0	SAND		
		1 '	'	\~ -/	inner graver, trader tine, sarro, trade(-) sin	t, ary	1 !			
		'	i '	1					ļ	
_ \ \		11/7/8/9	16/24	S-3	Medium dense, brown, medium to coal	rea SAND Little	0.0		İ	
$ \times$ '	5	<u> </u>	1 1	(4'-6')	fine gravel, trace fine sand, trace(-) silt	f moist	V.0			
- /\ '	'	ļ	'	` ' '	The state of the s	i, moioc	i j			
- ()		.] /	1 '				6'		
- \ /'	<u> </u>	14/18/41/23	8/24	S-4	Very dense, brown, medium to coarse	SAND, some fine	0.0	SAND AND		
$- \times '$	<u> </u>	! !	1 1	(6'-8')	gravel, trace(-) fine sand, trace(-) silt, v	wet at 8'	<u> </u>	GRAVEL	Í	
- / \!	<u> </u>	1 1	1 1	1 '	•			1		
- ()	 	22/22/22/22	i !	l	1					
- \ <i>/</i> !	├	20/20/20/20	13/24		Very dense, brown, medium to coarse	SAND, some fine	0,0	. }		
$ \times$ $+$	├ ── →	1 }	i j	(8'-10')	gravel, trace(-) fine sand, trace(-) silt, w	vet	i	.		
- / \	10	i j	()	1 /	1	ļ	i .			
()	├─ ``	5/5/8/12	11/24	1 00 1			1			
- 🔨 🕆		0/3/0/14	14/24	\$-6	Medium dense, brown-gray, medium to	coarse SAND, some	0.0			
1人一		1	ı J	(10'-12')	fine gravel, little fine sand, trace silt, we	et	· · · I			
· /	 1	i	. 1	i J	l i					
			.]	ı þ	End of exploration at 12'			*		
		ı İ	.]	, 1	Elici of exploration at 12		Ī			
- !		1	. [, ,	İ			}		
_ l					1		I			
-		,	1	. 1	1		I			
J	15		1		ı		I	J		
· -			- 1	1	ı	· .	1	1		
— }]	Ĭ	Ī	i	İ	İ	1		
- +	- 1			J		1		1		
- F]			ł	1		1		
·				j		l.	1	1		
_ -	~					I		İ		
·			ĺ]		I		
_ [1	ļ	J		1	1	I		
_ [20	1	- 1	ı			-	1		
. L		1		1				I		
_ L		J	Į			1		I		
		1		1			1	I		
- L		I		Ī			1	1		
. F				-			1			
-	<u> </u>	1		1			1			
· -	[1			
		- 1]	1		
-	— l	Ì	Ī	1			1	- 1		
- <u> </u>	25]	Ĭ			I			
ļ-				1		[1			
- -	 -			1]	1			
-	- 1		- 1			i				
emarks:								Ī		
	ce screened in field	d using TELm	andal Et	OOD abatalas	Dization detector (PID) referenced to be					

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG O	BORING	CM-45
-------	--------	-------

Page 1 OF PROJECT: Crane Manufacturing LOCATION: Springfield, MA DRILLING CONTRACTOR PROJECT NO.: 0076-22-04 FOREMAN Rob DATE STARTED Seaboard Environmental Drilling DATE FINISHED Ronnie 10/27/2009 DRILLING EQUIPMENT 10/27/2009 COMPLETION DEPTH Hollow Stem Auger Rig GROUND SURFACE ELEV. 17' TYPE BIT DATUM Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING UNDIST TIME CASING HAMM. FIRS WEIGHT COMPL HR. DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D. BORING SAMPLER Maintenance Shop area, north end Safety WEIGHT DROF LOCATION HAMMER 140 lbs 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC TYPE/ DESCRIPTION FIELD FT. WELL RESIST. NO. **MEASUREMENTS** DESCRIPTION CONSTRUCTION BL/6 IN. 3/7/11/26 6/24 Top 2": Medium dense, black, medium to coarse, SAND, little 0.0 FILL (0-2')fine gravel, trace coal ash, trace silt, dry Bottom 4": Red BRICK 17/21/8/7 5/24 S-2 Red BRICK 0.0 (2'-4')(Drilled through rubble to 5') 13/25/13/17 4/24 S-3 Dense, red BRICK, CONCRETE and WOOD 0.0 (5'-7')27/56/17/17 6/24 S-4 Very dense, red BRICK and CONCRETE, some wood, 0.0 (7'-9')trace fine to medium sand, trace silt, wet at 9' (drilled through rubble to 10') 10 10' 10/9/7/7 8/24 \$-5 Medium dense, black, fine to medium SAND, little silt, wet 0.0 (10'-12') 12 3/2/4/9 20/24 S-6 Top 4": Loose, black, fine to medium SAND, little 0.0 PĘAŤ (12'-14') siit, wet 13' Middle 8": Loose, ORGANIC SILT, moist SAND Bottom 8": Loose, gray, medium to coarse SAND, little 4/5/5/6 18/24 S-7 Medium dense, gray, medium to coarse SAND, trace fine 0.0 (15'-17') sand, trace(-) silt, wet End of exploration at 17' emarks:

Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)
 Well at 15' below ground surface, screen 15'-5', solid PVC riser 5' -2.5' above ground surface. Sand pack 15'-3', bentonite clay 3'-1', native cuttings to grade,

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-46 Page __1_OF__1_ PROJECT: Crane Manufacturing LOCATION: DRILLING CONTRACTOR Springfield, MA PROJECT NO.: 0076-22-04 FOREMAN Rob Seaboard Environmental Drilling DATE STARTED DATE FINISHED HELPER Ronnie 10/27/2009 DRILLING EQUIPMENT 10/27/2009 COMPLETION DEPTH Hollow Stem Auger Rig GROUND SURFACE ELEV. 11' TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL CASING No. Samples 5 UNDIST. CASING HAMM WEIGHT FIRST COMPL HR. DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon Rod A 1 5/8" O.D NE SAMPLER BORING South end of site, 20' East of CM-23 Safety DROP LOCATION HAMMER 140 lbs. 30" (Wire Line) ENGINEER/GEOLOGIST Brin Thompson SAMPLES SAMPLES DEPTH PENETR. REC TYPE/ DESCRIPTION FT. SOIL RESIST. REMARKS IN. NO. **MEASUREMENTS** DESCRIPTION BL/6 IN. 4" ASPHALT ASPHALT 8" CONCRETE CONCRETE 4/8/ 5/24 Very dense, dark brown, medfum to coarse SAND, some S-1 50 for 1" 0.0 FILL (1'-3') fine gravel, trace fine sand, trace silt, dry 10/15/16/13 14/24 S-2 Dense, brown, medium to coarse SAND, some fine gravel, 0.0 SAND AND (3'-5')trace fine sand, trace silt, dry GRAVEL 13/15/18/18 18/24 S-3 Dense, brown, medium to coarse SAND, some fine gravel, 0.0 (5'-7') trace fine sand, trace silt, dry 15/20/20/19 16/24 Dense, brown, medium to coarse SAND, some fine gravel, S-4 0.0(7'-9') trace fine sand, trace silt, dry 21/41/ 10/24 Very dense, brown, medium to coarse SAND, some fine gravel, S-5 0.0 50 for 5' (9'-11')trace fine sand, trace sift, dry End of exploration at 11'

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

emarks:

LOG OF BORING CI	M-47
------------------	------

PROJECT: Cr	rane Manufacturing	·							Ur	!
DRILLING COI	NTRACTOR			FOREMA	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO.: 0	076-22-04	
Seaboard DRILLING EQU	Environmental Drill	ing		HELPER	Ronnie	10/27/2009		DATE FINISHED 10/27/2009		
	m Auger Rig					COMPLETION DEPTH		GROUND SURFAC	E ELEV	
TYPE BIT	Hollow Stem	Auger	SIZE	&TYPE OF	CORE BARREL	12' No. Samples		DATUM		
CASING			<u> 1 </u>			TIME	6	FIDOT	UNDIST.	
CASING HAMI	и. O.D. Split Spoon	WEIGHT	K O B		DROP	WATER LEVEL (FT.)		FIRST NE	COMPL.	HR.
SAMPLER: 2 (Safety	Rod A 1 5/8 WEIGHT	" O.D.	DROP		BORING	South end of site, N	orth of CM-23	<u> </u>	
HAMMER		140 lbs.		30" (Wire	_ine}	LOCATION				
SAMPLEO			AMPL	E8		ENGINEER/GEOLOGIST	Brin I nompson			
SAMPLES	DEPTH FT.	PENETR. RESIST.	REC.	TYPE/ NO.	DESCRIPTIO	М	FIELD MEASUREMENTS	SOIL	REMAR	ks
$\overline{}$	 	BL/6 IN. 4/9/11/6	1/04				MEAGOREMENTS	DESCRIPTION		
- \/		4/9/1/16	4/24	1	Top 2": Medium dense, brown, fine to	medium SAND and	0.0	TOPSOIL		
		f	1	(0-2')	SILT (grass)(TOPSOIL) Bottom 2": Red BRICK			FILL		
$\overline{}$					Bottom 2 : 1/64 BRICK					
~ \ /		9/11/7/8	6/24	S-2	Red BRICK, trace wood		0.0	[
$- \times$				(2'-4')			0.0			
-/ \]						
		8/13/31/15	16/24	S-3	Top 6": Red BRICK					
$ \times$	5		,	(4'-6')	Bottom 10": Dense, dark brown, medic	im to coorea SAND	0.0			
- /\				` -/	trace fine sand, trace silt, moist	ini to coarse SAND,			+3	i
- ()		4.414 = 10 :-				i		6'		
~ \/	 	14/15/20/26	15/24	S-4	Dense, brown, medium to coarse SAN	D, some fine gravel,	0.0	SAND AND		
$ \times$ $+$				(6'-8')	trace fine sand, trace(-) silt, moist			GRAVEL		
								· [
- \		16/20/17/18	10/24	S-6	Dense, brown, medium to coarse SAN	D some fine arrayol	0.0			
- X				(8'-10')	trace fine sand, trace(-) silt, moist	o, some line graver,	0.0			ĺ
-/\	10	1	- 1		,, ,					
$\langle \ \rangle$		12/19/24/33	10/04	•						ı
<u> </u>		12/19/24/33	10/24	\$-6 (10'-12')	Dense, brown, medium to coarse SANI	D, some fine gravel,	0.0	1 1		
$ \wedge$ [ł	(10-12)	trace fine sand, trace(-) silt, dry					- 1
		Ī						↓		ľ
- -					End of exploration at 12'					
- }										- 1
· -				- 1						
		ľ	- 1				İ			- 1
_ [_	15		- 1	1						- 1
-										
- -			ſ	l		1	İ	1]
<u> </u>	-	[j	ļ			1
			- 1	- 1		į		1		
[_		İ		J			j	į		
- <u> </u>				- 1				1		l
- F						!		İ		
<u> </u>				1		ł				l
		İ]			1			İ
_ [ŀ				ŀ		ļ
· [_	_ 7	1					}			- 1
-				l			1			
·	-	- 1						İ		1
<u> </u>				ļ			ļ			
_		1					İ	1		
				1		i				
_ _	25	- 1	- 1]]		
·				- 1]	İ	İ		
		1		- 1						ļ
·						•	ļ	ļ		
emarks:	J_		<u>—</u> L							
 Soil headspac 	e screened in field	using TEI mo	odel 58	OB photoion	ization detector (PID) referenced to ben	zono in ois Desellere			· · · · · · · · · · · · · · · · · · ·	
				,	The state of the s	ZONZ III all. (Neaulings Sho)	vi in parts per million	(ppm)		

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING CM-48 Page 1 OF PROJECT: Crane Manufacturing Springfield, MA DRILLING CONTRACTOR PROJECT NO.: 0076-22-04 FOREMAN Rob DATE STARTED DATE FINISHED Seaboard Environmental Drilling HELPER Ronnie 10/27/2009 10/27/2009 DRILLING EQUIPMENT COMPLETION DEPTH GROUND SURFACE ELEV. Hollow Stem Auger Rig DATUM TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BARREL No. Samples CASING UNDIST CASING HAMM. FIRS? COMPL HR. WEIGHT DROP WATER LEVEL (FT.) SAMPLER: 2" O.D. Split Spoon NE Rod A 1 5/8" Q.D. South end of site, West of CM-23 BORING SAMPLER Safety WEIGHT DROP LOCATION ENGINEER/GEOLOGIST Brin Thompson HAMMER 140 lbs 30" (Wire Line) SAMPLES SAMPLES DEPTH PENETR. REC. TYPE/ DESCRIPTION **FIELD** SOIL REMARKS FT. RESIST. IN. NO. MEASUREMENTS DESCRIPTION BL/6 IN. 8" CONCRETE CONCRETE FILL 6/17/9/10 8/24 Top 2": Red BRICK 0.0 (1'-3')Bottom 6": Medium dense, brown, medium to coarse SAND, dry 2/3/3/4 12/24 S-2 Loose, brown, medium to coarse SAND, little fine gravel, 0.0 (3'-5')little fine sand, trace sitt, dry 9/10/10/10 12/24 S-3 Medium dense, brown, medium to coarse SAND, some fine 0.0 SAND AND (5'-7')gravel, trace fine sand, trace silt, dry GRAVEL 12/14/21/29 22/24 S-4 Dense, brown, medium to coarse SAND, some fine 0.0 (7'-9') gravel, trace fine sand, trace slit, dry 18/18/26/46 15/24 Dense, brown, medium to coarse SAND and GRAVEL, S-5 0.0 (9'-11') trace fine sand, trace(-) silt, dry End of exploration at 11

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

DD0 (505					LOG OF BORING CM-49	<u>) </u>		Page	9 1 OF 1
DRILLING CON	ane Manufacturin	<u>g</u>		1		LOCATION:	Springfield, MA	PROJECT NO.: 00	078-22-04
Seaboard E	NTRACTOR <u>Environment</u> al Dri	Mina		FOREMAN		DATE STARTED		DATE FINISHED	010-22-04
DRILLING EQL	JIPMENT	IIIIII		HELPER	Ronnie	10/27/2009		10/27/2009	
Hollow Ster	m Auger Rig					COMPLETION DEPTH		GROUND SURFAC	CE ELEV.
TYPE BIT	Hollow Sten	n Auger	SIZE	&TYPE OF	CORE BARREL	11' No. Samples	5	DATUM	
CASING			1			TIME	5	FIRST	UNDIST.
CASING HAMM	1.	WEIGHT			DROP	WATER LEVEL (FT.)		NE NE	COMPL. HR.
SAMPLER: 2" C	O.D. Split Spoon Safety		." O.D.			BORING	South end of site, So	outh of CM-23	
HAMMER	Sarety	WEIGHT		DROP		LOCATION		Judi of Gill a.C	
		140 lbs.	AMPLE	30" (Wire L	ine)	ENGINEER/GEOLOGIS	T Brin Thompson		T
SAMPLES	DEPTH	PENETR.			-		T		
	FT.	RESIST. BL/6 IN.	IN.	NO.	DESCRIPTIO)N	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS
_				 	8" CONCRETE			COVORETE	
					4 4 5 1 5 1 5 1			CONCRETE	1
- \ /	<u> </u>	11/7/7/8	5/24	S-1	Medium dense, brown, medium to coa	area SAND some fine	0.0	SAND AND	
$ \times$ $+$	_	_]]	(1'-3')	gravel, trace fine sand, trace silt, dry	ilde Orato, some mie	0.0	GRAVEL.	
- /\I	 	1	1 '	l			1		i
\leftarrow		_ '	'	[1		-		
- 🔪 🖊	 	7/9/7/10	14/24	S-2	Medium dense, brown, medium to coa	irse SAND, some fine	0.0		
- X I		-	1	(3'-5')	gravel, trace fine sand, trace silt, dry	*** * 4	1 5.5		
- / 🖊		1	'						
\leftarrow	5	40/40/40/40	12/04				i :		
· \ / 		10/10/10/19	18/24		Medium dense, brown, medium to coal	rse SAND, some fine	0.0		
$^ imes$ $^+$		4 1	1 1	(5'-7')	gravel, trace fine sand, trace silt, dry		j j		
· / \		1		i '	İ		1	i	I
		15/27/41/37	14/24	S-4	N				I
` \		10/2/14/10,	14,24		Very dense, brown, medium to coarse	SAND, some fine	0.0	. 1	}
_ 人「		1 ,	1 1	1 (1-0)	gravel, trace fine sand, trace silt, moist	•	1	.	i
		1 1	1	1 1			İ	.	i
		42/67/50	16/24	S-5	Very dense brown medium to occres	OAAID A	1	. 1 1	ı
_ \/ [10	for 5"	ا` ^{``} ` ا	(9'-11')	Very dense, brown, medium to coarse : gravel, trace fine sand, trace silt, dry	SAND, some tine	0.0		
~ / \		1 1	1	````	gravor, adoc into cana, adoc on, ary		1		
		J ,	1	, ,	1		1	↓ 1	
. [1 1	i	. 1	End of exploration at 11'		 		
- ⊦]]	,	. ,			1 1		
· -		1 1	.	, ,	1		1 [
- ⊦		. [. 1	. 1	1		1 1]	
-		1 1	.]		1			ĺ	
- -		ł [. 1	1	l		1		
F	 15	1 1	. 1		1]		
- -	"	1 1	- 1	ļ	l			1	
F	— ,	í l			ı		1 1		
-		1 1			ı		ļ		
<u> </u>		<i>l</i> [ı]	1	
_ [_ ¬	1 1							
_ [_ ,	1 1							
		<i>i</i> [1	1	;			1	ļ
_ L							1	1	!
L		/ [- 1	- 1			<u> </u>	1	į
- L	20			1				1	
L-	_ !						1	i	
-			1	- 1			1		
ļ	_	.]		1			<u> </u>	1	
- ⊨							[1	
-	_ 1	. 1	Ī]		1	i i	İ	}
- ⊨							Í j	I	İ
 	-	- 1						I	
-		J	Ī					i	
	- 25	1		1			ł I	1	ļ
- -	25	I	- 1				i j		I
⊢	I	1		1		J			
-	— —						1		
<u> </u>	- I]		1			i I		

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

					LOG OF BORING CM-50	<u> </u>		Page	1 Of	- 1
PROJECT: C	rane Manufacturing	7				LOCATION				
DRILLING CO	NTRACTOR			FOREMA	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO. : (076-22-04	
Seaboard	Environmental Dri	lling		HELPER	Ronnie	10/28/2009		DATE FINISHED		
PRILLING EQ						COMPLETION DEPTH		10/28/2009		
Hollow Ste	em Auger Rig					COMPLETION DEPTH GROUND SURFACE ELEV. 17' DATUM				
YPE BIT	Hollow Sten	1 Auger	SIZE	&TYPE OF	CORE BARREL	No. Samples	5	DITTON	UNDIST.	
CASING HAM	8.4	1 WEIGUE	<u> </u>			TIME		FIRST	COMPL.	HR.
SAMPLER: 2"	O.D. Split Spoon	WEIGHT Rod A 1 5/8	U O D		DROP	WATER LEVEL (FT.)		8'		711 (
SAMPLER	Safety	WEIGHT	O.D.	DROP		BORING	Central Machine Sh	op area, north of TP	-3	
IAMMER	,	140 lbs.		30" (Wire I	ine)	LOCATION				
			AMPLE			ENGINEER/GEOLOGIST	Brin Thompson			
SAMPLES	DEPTH	PENETR.	REC.	TYPE/	DESCRIPTION)N	EIE D			
	FT.	RESIST.	IN.	NO.	DESCRIPTION OF THE PROPERTY OF	''		SOIL	REMA	RKS
	<u> </u>	BL/6 IN.					MEASUREMENTS	DESCRIPTION		
	<u> </u>				4" CONCRETE			CONCRETE		
	- -	4						SAND AND	Ja.	
\cdot \setminus $/$	_	2/6/26/40	16/24	1	Dense, brown, medium to coarse SAN	ID, little fine	0.0	GRAVEL		
– X		4		(1'-3')	gravel, trace fine sand, trace silt, dry			1		
· / \		1	İ							
\leftarrow	} -	04/04/07/	14104		1				31	
	 -	21/21/37/ 50 for 2"	14/24		Very dense, brown, medium to coarse	SAND, some	0.0		***************************************	MALLANON MALLANON
- X		30 101 2		(3'-5')	gravel, trace fine sand, trace silt, dry		1		1 1	
	5	ļ	1	İ			1			
	-	15/41/50	8/24	S-3	Vani dance brown medicant				5'	
_		for 5"	0,2,4	(5'-7')	Very dense, brown, medium to coarse gravel, trace fine sand, trace sit, dry	SAND, some	0.0			
		1	l	(0-/)	graver, trace line sand, trace sit, dry					
									-	
		8/25/42/39	12/24	S-4	Very dense, brown, coarse SAND and	fine GRAVEL little	0.0	İ		
- 🗙		[(7'-9')	medium sand, wet at 8'	INIC OTOTVEE, MILIO	0.0			
	<u> </u>	,			,				-	
\longleftrightarrow	_									
	40	8/14/12/12	12/24	S-5	Medium dense, brown, medium to coa	se SAND, some fine	0.0			
- X	10			(9'-11')	gravel, trace fine sand, trace silt, wet					
				ř						٠.
		8/12/18/23	4/24	S-6	Daniel Lauren					
		0/12/10/20	4/24	(11'-13')	Dense, brown, medium to coarse SAN: fine sand, trace silt, wet	O, little fine gravel, little	0,0			
				(11-13)	nne sanu, dace siit, wet			·		
_										
İ										
$\overline{}$	15								15'	:
		3/4/3/3	14/24	S-7	Loose, brown, medium to coarse SAND	, some fine gravel. little	0.0		<u>,,, </u>	
- X		ŀ		(15'-17')	fine sand, trace s⊮t, wet	· · · · · · · · · · · · · · · · · · ·		İ		
- 	 -		-					↓ 		
ŀ	 ,	- 1			End of exploration at 17'					
·		- 1				l				
_			-			l	ļ	l		- 1
·			[i		ļ				- 1
. [20	l	Į				1			
			ĺ]			1	ľ		Ī
				1						

^{1.} Soit headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm) 2. Well at 1.5' below ground surface, screen 15'-5', solid PVC riser 5'-2.5' above ground surface. Sand pack 15'-3', bentonite clay 3'-1', native cuttings to grade, standpipe cemented in place

LOG OF	BORING	CM-51
--------	--------	-------

PROJECT: Co	rane Manufacturin	g		·-·		LOCATION:			OF	
DRILLING CONTRACTOR FOREMAN Rob					DATE STARTED	Springfield, MA	PROJECT NO.: 0076-22-04 DATE FINISHED			
Seaboard Environmental Drilling HELPER Ronnie DRILLING EQUIPMENT					10/28/2009		10/28/2009			
Hollow Stern Auger Rig					COMPLETION DEPTH		GROUND SURFACE ELEV.			
TYPE BIT Hollow Stem Auger SIZE &TYPE OF CORE BAR				&TYPE OF	CORE BARREL	11' No. Samples	5	DATUM	UNDIGT	
CASING CASING HAM	N.4	WEIGHT	Щ_			TIME	<u> </u>	FIRST	UNDIST.	HR.
SAMPLER: 2"	O.D. Split Spoon	Rod A 1 5/8	" O D		DROP	WATER LEVEL (FT.)		6.5'		****
SAMPLER	Safety	WEIGHT	. 0.0.	DROP		BORING LOCATION	Central Machine Sh	op area, east of TP-3	3	
HAMMER		140 lbs. 30" (Wire Line)			ENGINEER/GEOLOGIS	T Brin Thompson				
SAMPLES	DEPTH	PENETR.	SAMPLES TR. REC. TYPE/		-					
	FT.	RESIST. BL/6 IN.	IN.	NO.	DESCRIPTION	JN	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS	
_	 			1	4" CONCRETE			CONCRETE		
-		4/3/9/17	14/24	S-1 (1'-3')	Medium dense, dark brown, fine to co trace fine gravel, dry	arse SAND, little silt.	0,0	FILL.		
-		2/3/4/4	0/24	S-2 (3'-5')	No Recovery		-			
-	5 _	6/10/17/20	16/24	S-3 (5'-7')	Medium dense, brown, medium to coa gravel, trace fine sand, trace silt, wet a	erse SAND, little fine at 6.5'	. 0.0	5' SAND AND GRAVEL	••	
		17/14/12/12	18/24		Medium dense, brown-gray, medium t fine gravel, trace fine sand, trace silt, v	o coarse SAND, some vet	6.0			
-	10	11/8/7/8	24/24	S-5 (9'-11')	Medium dense, brown-gray, medium to fine gravel, trace fine sand, trace silt,	o coarse SAND, some wet	0.0			
					End of exploration at 11'	·				
				;						
-				;						
	15									
-		1								
- -		1								
				j						
-	20			Ī						
- - -	_							ļ		
· -										
- -							ļ ļ			
· -	25									
narks:	-				· · · · · · · · · · · · · · · · · · ·			I		1

1. Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

LOG OF	BORING	CM-52
--------	--------	-------

					LOG OF BORING CM-52			Page	1OF1
PROJECT: Cr	ane Manufacturing	1		~		II OCATION.			
DRILLING COL	NTRACTOR			FOREMAN	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO.: 0	076-22-04
Seaboard	Environmental Dril	ling		HELPER	Ronnie	10/28/2009		DATE FINISHED	
DRILLING EQU	JIPMENT					COMPLETION DEPTH	· · · · · · · · · · · · · · · · · · ·	10/28/2009	0E EC EX
TYPE BIT	m Auger Rig					11'		GROUND SURFAC	JE ELEV.
CASING	Hollow Sten	1 Auger	SIZE	&TYPE OF	CORE BARREL	No. Samples	5	DATON	UNDIST.
CASING HAMI	.d	Lucious	1			TIME		FIRST	COMPL. HR.
	O.D. Split Spoon	WEIGHT Rod A 1 5/8	P O D		DROP	WATER LEVEL (FT.)		6.5'	
SAMPLER	Safety	WEIGHT	U.D.	DROP		BORING	Central Machine Sh	op area, west of TP-	3
HAMMER		140 ibs.		30" (Wire L	ine)	LOCATION			
		s	AMPLI		1116)	ENGINEER/GEOLOGIS	Prin Thompson		
SAMPLES	DEPTH	PENETR.	REC.		DESCRIPTIO	161			
	FT.	RESIST.	IN.	NO.	DESCRIPTION	/N	FIELD	SOIL	REMARKS
		BL/6 IN.	1				MEASUREMENTS	DESCRIPTION	
_	<u> </u>] ""			4" CONCRETE			CONODETE	
		1	i i	İ			-	CONCRETE	4
- \ /		11/7/20/18	6/24	S-1	Medium dense, black, medium to coar	se SAND, some fine	0.0	FILL	•
$ \times$	<u> </u>	1	1	(1'-3')	gravel, little fine sand, trace silt, dry	TO STATE OF THE MARK	0.0	l	
- / \		ľ	1		1				
\leftarrow			1						
- \ /		6/9/9/3	12/24	S-2	Medium dense, brown, medium to coa	rse SAND, trace (-) fine	0.0		
$ \times$ i]	(3'-5')	sand, trace (-) silt, dry	0, maj adoo () mic	0.0		
. / 🖊		1	l	ĺ	1				
\leftarrow	5	!						5'	
. \ /		21/17/16/26	14/24		Dense, brown, medium to coarse SAN	D, some fine gravel.	0.0	SAND AND	
– X I		ļ	l	(5'-7')	trace fine sand, trace (-) silt, moist to w	ret at 6.5'	0.0	GRAVEL	
]	l			JORAVEL	
\leftarrow		i		1	ļ				
$\cdot \setminus \angle$		7/9/9/8	10/24	S-4	Medium dense, dark brown, medium to	coarse SAND, some	0.0		
- X				(7'-9')	fine gravel, trace fine sand, trace silt, w	ret .	0.0		
\leftarrow							<u> </u>		
		7/7/7/7	24/24		Medium dense, dark brown, medium to	coarse SAND, some	0.0		
~ X	10			(9'-11')	fine gravel, trace fine sand, trace silt, w	et	0.0		
			١ ا		·		ļ i		
			- 1						
		,			End of exploration at 11'				
- H		i	- 1						
-				ĺ		0			
- <u>}</u>		1	j					}	
ŀ	 i		i						
<u> </u>		ļ	J						
r	15	ſ	- 1						
- ⊦	''	ļ		İ		1	j		
<u> </u>	_	ł	- 1						
- F			- 1						i
ŀ			J	ĺ					
- -		Ī	- 1	-			İ	f	
			- 1	ļ					
		ļ	- 1				.	i	
_			- 1	1			1	ľ	
· [-				- 1					
. [20	1							
Г				1	•				
. [_		ļ	İ			ľ		
		1	- 1						
. [l				-	
Г		}	- 1				1		
. [j			İ		
ŗ				1					
. [1	- 1	j				1	,
							1	ľ	
. [25	l		1					İ
		1				1		1	
	_					ĺ	1	1	İ
		J		ſ			1	į	1
	- J	ŀ	i	1					

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

LOG O	F BORING	CM-53
-------	----------	-------

PROJECT: C	rane Manufacturing							Pag	e 1 OF 1		
DRILLING CO	NTRACTOR]		FOREMAI	V Dob	LOCATION:	Springfield, MA	PROJECT NO. : (0076-22-04		
Seaboard	Environmental Dri	lling		HELPER		DATE STARTED 10/28/2009		DATE FINISHED			
DRILLING EQ	UIPMENT em Auger Rig					COMPLETION DEPTH		10/28/2009 GROUND SURFACE ELEV.			
TYPE BIT	Hollow Stern	Auger	6176	ATVDE OF	CORE BARREL	11'		DATUM	DATUM		
CASING			٦٠٠٠	WI I FE OF	CORE BARREL	No. Samples TIME	6		UNDIST.		
CASING HAMI	M.	WEIGHT			DROP	WATER LEVEL (FT.)		FIRST 7'	COMPL. HR.		
SAMPLER: 2"	O.D. Split Spoon Safety	Rod A 1 5/8 WEIGHT	3" O.D.	l ppop		BORING	North of CM-40, for	mer UST 10-11 area	<u> </u>		
HAMMER	Outcty	140 lbs.		DROP 30" (Wire I	_ine)	LOCATION					
0.44504			SAMPL	ES]	ENGINEER/GEOLOGIS	I Brin Thompson				
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC.	TYPE/ NO.	DESCRIPTIO	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS		
		14/8/14/13	14/24	S-1 (0-2')	Top 2": MULCH Bottom 12": Red BRICK	<u></u>	0.0	FILL	1		
		15/17/11/20	12/24	S-2 (2'-4')	Medium dense, red BRICK, trace brov trace concrete, dry	vn fine to medium sand,	0.0		2		
-X	5	14/15/16/13	14/24	S-3 (4'-6')	Dense, red, BRICK, trace concrete, dr	у	0.0		4'		
		11/13/7/42	16/24	S-4 (6'-8')	Medium dense, red BRICK, trace wood medium sand, trace silt, wet at 7'	d, trace gray fine to	0.0				
X		14/18/26/50 for 2 ^e	5/24	S-5 (8'-10')	Dense, ash, wet		0.0				
->	10	11/50 for 5"	5/24	S-6 (10'-12')	Very dense, black, medium to coarse \$ trace brick, wet	SAND, some ash,	0.0		11'		
					Augus - 6 - 1 - 1 - 1 - 1 - 5 - 1			+			
[ĺ	•	Auger refusal at 11' End of Exploration						
	<u></u>	Ì	']								
- }			Ì								
_	15		ļ								
				ĺ							
- .		ľ									
į.			İ]				
_ [
- -			i	}							
ŀ	— I		ł				!		ļ		
- F		1	ĺ	1					Ì		
- [20	ľ				1					
		ļ	1	ļ							
· }								İ			
_			ĺ]			
-	_ 7	ĺ		ľ				ļ	i		
·]					İ				
	. 	l		1							
							ļ <u></u>	1	İ		
.	25	ľ	- 1	ļ		Ì	ĺ		ŀ		
<u> </u>								ļ]		
· [-		1]		ļ	ŧ	Ì	Ì		
				1					•		

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm) 2. Well set at 11' below ground surface, screen 11'-4', solid PVC riser 4'-2' above ground surface. Sand pack 11'-2', bentonite clay 2'-1', native cuttings to grade, standpipe cemented in place

LOG OF BORING CM-5	4
--------------------	---

PROJECT: Cr	ane Manufacturing			····		_			OF	
DRILLING CO	NTRACTOR			FOREMAI	N Rob	LOCATION: DATE STARTED	Springfield, MA	PROJECT NO.: 00	076-22-04	
Seaboard DRILLING EQU	Environmental Drift	ing		HELPER	Ronnie	DATE STARTED DATE FINISHED 10/28/2009 10/28/2009				
Hollow Ste	m Auger Rig					COMPLETION DEPTH		GROUND SURFAC	E ELEV.	
TYPE BIT	Hollow Stem	Auger	SIZE	&TYPE OF	CORE BARREL	10' No. Samples	5	DATUM		
CASING CASING HAM	√ 1.	WEIGHT			Innon	TIME		FIRST	UNDIST.	HR.
SAMPLER: 2" (O.D. Split Spoon	Rod A 1 5/8	" O.D.	-	DROP	WATER LEVEL (FT.) BORING		8'		
SAMPLER HAMMER	Safety	WEIGHT		DROP		LOCATION	west of CM-40, in fo	rmer UST 10-11 area	à	
T D GWINIE I		140 lbs.	AMPLE	30" (Wire i	Line)	ENGINEER/GEOLOGIST	Brin Thompson			
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.		DESCRIPTION	ON	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMAR	:KS
- \ /		4/5/6/3	6/24	S-1	Top 2": MULCH		0.0	FILL		
$ \times$				(0-2')	Bottom 4": Red BRICK, dry					
\leftarrow										
		17/12/11/8	14/24	S-2 (2'-4')	Medium dense, red, BRICK and CON	ICRETE, dry	0.0			
-	5	7/8/8/9	10/24	S-3 (4'-6')	Medium dense, red, BRICK, trace cor	ncrete, dry	0.0			
-		21/20/26/28	12/24	S-4 (6'-8')	Dense, red, BRICK, wet at 8'		0.0			
		18/50 for 3"	7/24	S-5	Top 6": Very dense, red, BRICK, wet	i	0.0			
-	10			(8'-10')	Bottom 1": Very dense, COAL ASH, w	_				
					Auger refusal at 10' End of Exploration	1				
_						ì				
- - -		1								
<u>-</u>	15	ļ								
-					4					
<u> </u>				İ						
	20									
- - -							į			
-								ļ		
-										
- - -	25		}					Ì		
temarks: 1. Soll headspace	ce screened in fold	Lucina TEt	odal En	0D nb-4-!	in the state of th			. <u> </u>		
	serection in their	iooniy i⊏iiii	20E1 081	op buotoior	nization detector (PID) referenced to be	nzene in air. Readings sho	wn in parts per million	(ppm)		

						LOG OF BORING CM-	55		Page	1_0F	1
PROJECT: C	rane Mar	ufactur	ing				LOCATION:	6 1 6 (())			
DRILLING CÖ	NTRACT	OR			FOREMAI	V Roh	DATE STARTED	Springfield, MA	PROJECT NO.: 0	076-22-04	
Seaboard	Environn	nental D	Drilling		HELPER	Ronnie	_		DATE FINISHED		
DRILLING EQ	UIPMEN	Ť			1	Tionigo	10/28/2009 COMPLETION DEPTH		10/28/2009		
Hollow Ste									GROUND SURFA	CE ELEV.	
TYPE BIT	Ho	llow St	em Auger	SIZE	&TYPE OF	CORE BARREL	10' No. Samples		DATUM		
CASING				7			TIME	5		UNDIST.	
CASING HAM	М.		WEIGHT			DROP	WATER LEVEL (FT.)		FIRST	COMPL.	HR.
SAMPLER: 2"				" O.D.			BORING	East of CM-40 in for	8'	L	
SAMPLER	Safety		WEIGHT		DROP		LOCATION	EBSCOLCIM-40 III TOP	mer 051 10-11 area	ì	
HAMMER	,		140 lbs.		30" (Wire I	Line)	ENGINEER/GEOLOGIS	T Brin Thompson		T	
D41404 50	1			AMPL				- Phil (Hompson			
SAMPLES		EPTH FT.	PENETR. RESIST. BL/6 IN.	REC.	. TYPE/ NO.	DESCRIPT	TION	FIELD MEASUREMENTS	SOIL DESCRIPTION	REMARKS	3
			2/3/3/3	6/24	S-1	Ton 49- Mari Old					
- \/			2701010	0/24	(0-2')	Top 4": MULCH, wet		0.0	FILL		
- X	— —			i	(0-2)	Bottom 2": Red, BRICK, dry				l	
· / \	_		1	1	1						
	}	-	4/5/5/19	0/24		N. 5		ļ	ĺ		
. \ /	-		4/3/3/19	0/24	1	No Recovery					
- X		-		Į.	(2'-4')						
· / \				1	1						
\leftarrow	-	-		l	I .	1					
\cdot \setminus \angle		-	6/11/13/21	6/24		Medium dense, red, BRICK, dry		0.0	i		
– X		5	_	ľ	(4'-6')	1			ļ		
\cdot $/$ \setminus	<u> </u>					1		1			
\leftarrow		_		1	ļ			i			
\cdot \setminus \angle	 		10/12/19/8	8/24	S-4	Dense, red, BRICK, trace wood, trace	ce concrete, trace brown	0.0			
- X		_	- :	1	(6'-8')	fine to medium SAND, wet at 8'	,	- · · · ·	1		
	<u> </u>		1	l i	1			,			
\leftarrow	L	_									
			11/50 for 5"	4/24	S-5	Very dense, red, BRICK, trace wood	I. trace concrete, trace	0.0			
- 🗙	L	_		l	(8'-10')	brown fine to medium SAND, wet	, 4405 001101015, 4406	0.0			
					l ` ´	, , , , , , , , , , , , , , , , , , ,					
		10	_						Į l		
			7			Auger refusal at 10' End of Explorati	on	 	*		
_						The state of Exploration	511		i		
		_	7 (
_			1								
i		_	7 1					ľ			
_ [ı							
- [_	7 !								
_ [1 1	' l							
[_	٦ ١						İ		
_ 1		15		ļ							1
1			7	ľ				[i		
[ļ		
ſ		_	7	1					l		
_ [1				j	į į			. [
ļ			7 1			•			i		
			1 1	- 1	1				ĺ		- 1
- J		_	1						l		- 1
ŀ	·- ·· · · · ·		1	J					- 1		
- -		_	- [i					I		l
<u> </u> -		20	1	- 1					İ		ļ
- F			-	Į	J		i		J		ì
F	_] [i	i				į		ſ
- ∤-			-i I								
F				- 1	ļ		1	ŀ			
·			-		l		İ				- 1
<u> </u>			1						i		ŀ
·			4 I	-			J				- 1
J]]		-						I
·			4 l		i		i				- 1
_				- 1			l		ł		1
		25			- 1				ŀ		- 1
. ⊢									İ		- 1
. L			į l						l		- 1
Į				- 1	- 1			Į.	- 1		ı

^{1.} Soil headspace screened in field using TEI model 580B photoionization detector (PID) referenced to benzene in air. Readings shown in parts per million (ppm)

October 13, 2009

Valerie Tillinghast OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103

Project Location: Crane Manufacturing, Springfield, MA

Client Job Number: Project Number: 76-22-04

Laboratory Work Order Number: 09J0115

Enclosed are results of analyses for samples received by the laboratory on October 5, 2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Susan M. Burney Project Manager

OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103 ATTN: Valerie Tillinghast REPORT DATE: 10/13/2009

PURCHASE ORDER NUMBER:

PROJECT NUMBER:

76-22-04

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

09J0115

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Crane Manufacturing, Springfield, MA

MADEP-PPH-0-1.1	FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
SW-846 6020A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-8	CM-17	0930115-01	Ground Water		MADEP-EPH-04-	1.1
SW-486 7470A SW-4					MADEP-VPH-04-	1.1
CM-36					SW-846 6020A	
CM-36					SW-846 7470A	
MADEP-VPI-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B SW-846 7470A SW-846 8260B SW-846 7470A SW-846 8260B SW-846 7470A SW-846 8260B					SW-846 8260B	
SW-446 6020A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 7470A SW-346 6020A SW-346 6020A SW-346 6020A SW-346 6020A SW-346 7470A SW-346 6020A SW-346 7470A SW-346 6020A SW-346 7470A SW-3	CM-36	09J0115-02	Ground Water		MADEP-EPH-04-	1.1
SW-846 520B SW-846 520B					MADEP-VPH-04-	1.1
SW-366 8200B SW-3					SW-846 6020A	
CM-42					SW-846 7470A	
MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 620B CM-34 P910115-04 P010115-04 P010115-05 P010115-05 P010115-05 P010115-05 P010115-06 P010115-07 P010115-08 P01					SW-846 8260B	
SW-846 6020A SW-847 470A SW-846 220B SW-846 220B SW-846 220B SW-846 220B SW-846 220B SW-846 220B SW-846 2020A SW-846 2020A SW-846 2020A SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020B SW-846 2020A SW-846 2020B SW-846 2020	CM-42	09J0115-03	Ground Water		MADEP-EPH-04-	I.1
CM-34					MADEP-VPH-04-	1.1
CM-34					SW-846 6020A	
CM-34					SW-846 7470A	
MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 6200B CM-39 O9J0115-05 Ground Water OPJ0115-05 Ground Water OPJ0115-06 Ground Water OPJ0115-06 OPJ0115-06 OPJ0115-07 OPJ0115-07 OPJ0115-07 OPJ0115-07 OPJ0115-07 OPJ0115-07 OPJ0115-08 OPJ01					SW-846 8260B	
SW-846 6020A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 8260B SW-846 8260B SW-846 8260B SW-846 6020A SW-846 6020A SW-846 8260B SW-846 8260B SW-846 8260B SW-846 8260B SW-846 8260B SW-846 6020A SW-846 8260B SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 8260B SW-846 7470A SW-846 8260B SW-846 7470A SW-846 8260B SW-846 6020A SW-8	CM-34	09J0115-04	Ground Water		MADEP-EPH-04-	1,1
CM-39					MADEP-VPH-04-	1.1
SW-846 8260B SW-846 P-PH-04-1.1 MADEP-PH-04-1.1 SW-846 6020A SW-846 7470A SW-846 6020B MADEP-PH-04-1.1 SW-846 8260B MADEP-PH-04-1.1 SW-846 8260B MADEP-PH-04-1.1 SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 8260B MADEP-PH-04-1.1 SW-846 8260B MADEP-PH-04-1.1 SW-846 6020A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 602					SW-846 6020A	
CM-39 09J0115-05 Ground Water MADEP-EPH-04-1.1 KW-39 WADEP-VPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 8260B MW-35 MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B SW-846 8260B Existing-1 09J0115-07 Ground Water MADEP-PPH-04-1.1 SW-846 7470A SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 MADEP-EPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A					SW-846 7470A	
MADEP-VPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020B MW-35 MADEP-EPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 8260B Existing-1 ADEP-VPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A SW-846 7470A SW-846 6020A					SW-846 8260B	
SW-846 6020A SW-846 7470A SW-846 8260B MADEP-PH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B Existing-1	CM-39	09J0115-05	Ground Water		MADEP-EPH-04-	1.1
SW-846 7470A SW-846 8260B MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 7470A SW-846 6020B SW-846 6020B SW-846 6020B SW-846 6020B SW-846 6020B SW-846 6020B SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020B SW-846 6020B SW-846 6020B SW-846 6020B SW-846 8260					MADEP-VPH-04-	1.1
MW-35 09J0115-06 Ground Water SW-846 8260B MW-35 MADEP-EPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 7470A SW-846 8260B SW-846 8260B Existing-1 MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A SW-846 7470A					SW-846 6020A	
MW-35 09J0115-06 Ground Water MADEP-EPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8020B Existing-1 09J0115-07 Ground Water MADEP-PH-04-1.1 SW-846 6020A SW-846 8260B SW-846 8260					SW-846 7470A	
MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B SW-846 8260B MADEP-PPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-PPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A					SW-846 8260B	
Existing-1 09J0115-07 Ground Water SW-846 6020A Existing-1 09J0115-07 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A	MW-35	09J0115-06	Ground Water		MADEP-EPH-04-	1,1
Existing-1 09J0115-07 Ground Water SW-846 8260B Existing-1 09J0115-07 Ground Water MADEP-EPH-04-1.1 SW-846 8260B Existing-2 09J0115-08 Ground Water SW-846 6020A Existing-2 Ground Water MADEP-PH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A					MADEP-VPH-04-	1.1
Existing-1 09J0115-07 Ground Water SW-846 8260B MADEP-EPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 SW-846 6020A SW-846 8260B MADEP-EPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 7470A					SW-846 6020A	
Existing-1 09J0115-07 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-VPH-04-1.1 SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 6020A SW-846 7470A					SW-846 7470A	
MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-VPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A					SW-846 8260B	
SW-846 6020A SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A	Existing-1	09J0115-07	Ground Water		MADEP-EPH-04-	1.1
SW-846 7470A SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A		•			MADEP-VPH-04-	1.1
SW-846 8260B Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A					SW-846 6020A	
Existing-2 09J0115-08 Ground Water MADEP-EPH-04-1.1 MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A					SW-846 7470A	
MADEP-VPH-04-1.1 SW-846 6020A SW-846 7470A					SW-846 8260B	
SW-846 6020A SW-846 7470A	Existing-2	09J0115-08	Ground Water		MADEP-EPH-04-	1.1
SW-846 7470A					MADEP-VPH-04-	1.1
					SW-846 6020A	
SW-846 8260B					SW-846 7470A	
					SW-846 8260B	

OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103 ATTN: Valerie Tillinghast

REPORT DATE: 10/13/2009

PURCHASE ORDER NUMBER:

PROJECT NUMBER;

76-22-04

ANALYTICAL SUMMARY

WORK ORDER NUMBER;

09J0115

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Crane Manufacturing, Springfield, MA

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
CM-37	09J0115-09	Ground Water		MADEP-EPH-04-	-1.1
				MADEP-VPH-04-	-1.1
				SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	
Existing-3	09J0115-10	Ground Water		MADEP-EPH-04-	-1.1
				MADEP-VPH-04-	-1.1
				SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260B

Qualifications:

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

1,4-Dioxane

B005943-BS1

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Significant uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene, 2-Hexanone (MBK), 4-Methyl-2-pentanone (MIBK), Bromomethane, Hexachlorobutadiene, Methylene Chloride, Naphthalene B005880-BS1, B005880-BS1, B005880-BS1, B005943-BS1, B005943-BSD1, 09J0115-05[CM-39], 09J0115-06[MW-35]

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane

 $09J0115-01[CM-17], 09J0115-02[CM-36], 09J0115-03[CM-42], 09J0115-04[CM-34], 09J0115-05[CM-39], 09J0115-06[MW-35], 09J0115-07[Existing-1], \\09J0115-08[Existing-2], 09J0115-09[CM-37], 09J0115-10[Existing-3], B005880-BLK1, B005880-BSD1, B005943-BLK1, B005943-BSD1, B005945-BSD1, B005945-BSD1, B005945-BSD1, B005$

MADEP-EPH-04-1,1

SPE cartridge contamination with non-petroleum compounds, if present, is verified by GC/MS in each method blank per extraction batch and excluded from C11-C22 aromatic range fraction in all samples in the batch. No significant modifications were made to the method.

MADEP-VPH-04-1.1

No significant modifications were made to the method. All VPH samples were received preserved properly at pH <2 in the proper containers as specified on the chain-of-custody form unless specified in this narrative.

SW-846 8260B

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits somewhere between 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, vinyl chloride, chloromethane, dichlorodifluoromethane, 2-hexanone, naphthalene, bromomethane, 2,2-dichloropropane and tetrachloroethylene

Duplicate laboratory fortified blank RPDs were all within control limits specified by the method except for "difficult analytes" where RPDs of 50% are used and/or unless otherwise listed in this narrative. Difficult analyte: 1,4-dioxane

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Daren J. Damboragian Laboratory Manager 4/1

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-17

Sampled: 10/5/2009 11:40

Sample ID: 09J0115-01

			Volatile Organic Co	mpounds by GO	C/MS				
Analyte	Results	RL	l lade.	Dilusian	F7	Mal	Date	Date/Time	
Acetone	ND	50	Units μg/L	Dilution 1	Flag	Method SW-846 8260B	Prepared 10/7/09	Analyzed 10/7/09 17:42	Analyst
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L:	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF MFF
Benzene	ND	1.0	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Bromobenzene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Bromodichloromethane	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Bromoform	ND	5.0	. μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
2-Butanone (MEK)	ND	20	µg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
n-ButyIbenzene	ND	1.0	μ g/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
sec-Butylbenzene	ND	1.0	, τ μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Carbon Disulfide	ND	3,0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Carbon Tetrachloride	ND	1.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Chloroform	NĐ	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF '
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
2-Chlorotoluene	ND	1.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
4-Chlorotoluene	ND	1.0	μք⁄L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5,0	μ <i>g/</i> L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Dibrornomethane	ND	1.0	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2-Dichlorobenzene	ND ·	1.0	µg/L,	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,3-Dichlorobenzene	ND	1.0	ր g/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,4-Dichlorobenzene	ND	1.0	μ ϗ/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2-Dichloroethane	NĐ	1.0	μg/L	ł		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
cis-1,2-Dichloroethylene	ND	1.0	µу/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
2,2-Dichloropropane	ND	1.0	μg/L	Ŀ		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
cis-1,3~Dichloropropene	ND	5,0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
trans-1 3-Dichloropropene	ND	0.50	μg/L	l		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Diethy 1 Ether	ND	2.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-17

Sampled: 10/5/2009 11:40

Sample ID: 09J0115-01 Sample Matrix: Ground Water

Volatile Organic Compounds by GC	MS
----------------------------------	----

				·r ,					
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	l	riag	SW-846 8260B	10/7/09	10/7/09 17:42	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Isopropylbenzene (Cumene)	ND	1.0	ր <i>ց</i> ⊬ րց/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
p-lsopropyltoluene (p-Cymene)	ND	1.0		1		SW-846 8260B	10/7/09		
Methyl tert-Butyl Ether (MTBE)		1.0	μg/L					10/7/09 17:42	MFF
Methylene Chloride	ND		μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
, , ,	ND	10	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Naphthalene	ND	2.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	l		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	Į		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF .
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17;42	MFF
I,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Vinyl Chloride	ND	2,0	. υ μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 17:42	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		106	70-130					10/7/09 17:42	
Toluene-d8	i	96.7	70-130					10/7/09 17:42	
4-Bromofluorobenzene		101	70-130					10/7/09 17:42	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	106	70-130		10/7/09 17:42
Toluene-d8	96.7	70-130		10/7/09 17:42
4-Bromofluorobenzene	101	70-130		10/7/09 17:42

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-17

Sampled: 10/5/2009 11:40

Sample ID: 09J0115-01

		Pet	roleum Hydrocarbo	ns Analyses -	EPH				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys
C9-C18 Aliphatics	ND	150	μg/L	l		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
C19-C36 Aliphatics	. ND	150	µg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 13:55	CJM
Anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 13;55	CJM
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13;55	СЈМ
Chrysene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
Indeno(I,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
2-Methylnaphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СЈМ
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	СІМ
Pyrene	ND	2.0	. _С	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 13:55	CJM
Surrogates	WHEN !!	% Recovery	Recovery Limits		Flag				
Chlorooctadecane (COD)		70.1	40-140					10/8/09 13:55	
o-Terphenyl (OTP)		82.2	40-140					10/8/09 13:55	
2-Bromenaphthalene		93.1	40-140					10/8/09 13:55	
2-Fluorobiphenyl		97.8	40-140					10/8/09 13:55	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-17

Sampled: 10/5/2009 11:40

Sample ID: 09J0115-01

Petroleum Hydrocarbons Analyses - VPH

Analyte	Results	D.I	M.C. te .	Date:	CI.		Date	Date/Time	
	Resurts	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 13:59	EEH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
Naphthalene	ND	10	µg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 13;59	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 13:59	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 13:59	EEH
o-Xylene	ND	1.0	μ g /L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 13:59	EEH
Surrogates		% Recovery	Recovery Limits		Flag			· .	
2,5-Dibromotoluene (FID)		106	70-130					10/7/09 13:59	
2,5-Dibromotoluene (PID)		87.3	70-130					10/7/09 13:59	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-17

Sampled: 10/5/2009 11:40

Sample ID: 09J0115-01

	Metals Analyses (Total)													
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Anałyzed	Analyst					
Arsenic	ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					
Barium	ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					
Chromium	ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:16	MPF					
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					
Silver	ND	2,5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:24	KMT					

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: CM-36

Sampled: 10/5/2009 12:45

Sample ID: 09J0115-02

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Bromobenzene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Bromochtoromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Bromodichloromethane	ND	1.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
n-Butylbenzene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
tert-Butył Ethył Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846.8260B	10/7/09	10/7/09 18:12	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Chlorodibromomethane	ND	0.50	μ g/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Chloromethane	ND	2.0	μg/L	i		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
4-Chlorotoluene	ND	1.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2-Dibromo-3-chtoropropane (DBCP)	NĐ	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2-Dichforobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,3-Dichlorobenzene	ND	1.0	րք/Լ	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,4-Dichlorobenzene	ND	1.0	րք/∟	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
I,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,3-Dichloropropane	ND	0.50	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
2,2-Dichloropropane	ND	1.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
l,l-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
sis-1,3-Dichloropropene	ND	5,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
rans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Diisopropyl Ether (DIPE)	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Ithylbenzene	ND	1.0	μg/L	1	. ,5	SW-846 8260B	10/7/09	10/7/09 18:12	MFF
		*10	k9.1	•		0 17 0:10 020013	10//107	10/7/07 10.12	TAYY, I.

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-36

Sampled: 10/5/2009 12:45

Sample ID: 09J0115-02

		Ve	olatile Organic Com	oounds by GC	C/MS				····· <u>····</u>
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
4-Methyl-2-pentanone (M1BK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Naphthalene	ND	2.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Tetrachloroethylene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2,4-Trichtorobenzene	. ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,1,1-Trichloreethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2,3-Trichloropropane	ND	2.0	µg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
m+p Xylene	ND	2.0	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 18:12	MFF
o-Xylene	ND	1.0	μg/L	1		\$W-846 8260B	10/7/09	10/7/09 18:12	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		105	70-130	·····				10/7/09 18:12	
Foluene-d8		97.8	70-130					10/7/09 18:12	
1-Bromofluorobenzene		99.6	70-130					10/7/09 18:12	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-36

Sampled: 10/5/2009 12:45

Sample ID: 09J0115-02

	Petroleum	Hydrocarbons	Analyses -	EPH
--	-----------	--------------	------------	-----

				-					
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	СЈМ
Acenaphthylene	ND	2.0	μg/L	ĭ		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	СЈМ
Anthracene	ND	2.0	μ g /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:17	СЈМ
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	СЈМ
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	СЈМ
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:17	СЈМ
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	СЈМ
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	СЈМ
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:17	CJM
Indeno(1,2,3-cd)pyrene	· ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
2-Methylnaphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1, 1	10/7/09	10/8/09 14:17	CJM
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:17	СЈМ
Pyrene	ND	2.0	μ g/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:17	CJM
Surrogates		% Recovery	Recovery Limits		Flag			***	
Chlorocctadecane (COD)		70.0	40-140	****				10/8/09 14:17	
o-Terphenyl (OTP)		82.1	40-140					10/8/09 14:17	
2-Bromonaphthalene		94.0	40-140					10/8/09 14:17	
2-Fluorobiphenyl		99.0	40-140			•		10/8/09 14:17	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-36

Sampled: 10/5/2009 12:45

Sample ID: 09J0115-02

Petroleum Hydroc	arbons Analyses - VPH
------------------	-----------------------

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 14:47	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	ÉEH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
C9-C10 Aromatics	NĐ	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
Benzene	ND	1.0	μg/L	I		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 14:47	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 14:47	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 14:47	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		103	70-130					10/7/09 14:47	
2,5-Dibromotoluene (PID)		84.7	70-130					10/7/09 14:47	

Surrogates	% Recovery	Recovery Limits	Flag	 •••••••
2,5-Dibromotoluene (FID)	103	70-130		 10/7/09 14:47
2,5-Dibromotoluene (PID)	84.7	70-130		10/7/09 14:47

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-36

Sampled: 10/5/2009 12:45

Sample ID: 09J0115-02

				Metals Ana	lyses (Total)					
	Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic		ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT
Barium		ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT
Cadmium		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT
Chromium		ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT
Lead		ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT
Mercury		ND	01000.0	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:18	MPF
Selenium		ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT
Silver		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:27	KMT

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-42

td Compte 4. CM 42

Sample ID: 09J0115-03

Sample Matrix: Ground Water

Sampled: 10/5/2009 12:30

Volatile (Organic	Compounds by	GC/MS

Analyte	Results	RL	¥1)	DW 4	No.		Date	Date/Time	
Acetone	ND	50	Units μg/L	Dilution 1	Flag	Method	Prepared	Analyzed	Analyst
tert-Amyl Methyl Ether (TAME)	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Benzene	ND	1.0		1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Bromobenzene	ND	1.0	րք/L րք/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Bromochioromethane	ND	1,0		1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Bromodichloromethane	ND	1,0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Bromoform	ND	5.0	μg/L /\	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Bromomethane	ND	5.0	μg/L 	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
2-Butanone (MEK)	ND	20	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
n-Butylbenzene	ND	1.0	μg/L μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
sec-Butylbenzene	ND	1.0	· ·	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
tert-Butylbenzene	ND	1.0	μg/L /(SW-846 8260B	10/7/09	10/7/09 18:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L 	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Carbon Disulfide	ND	3.0	μ <i>g/</i> L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Carbon Tetrachloride	ND	1.0	μg/L #	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Chloroethane	ND		μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Chloromethane		2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
2-Chlorotoluene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2-Dibromoethane (EDB)	ND	5,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF.
Dibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Dichlorodifluoromethane (Freen 12)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1-Dichloroethane	ND	2.0	μg/L,	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1-Dichloroethylene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
cis-1,2-Dichloroethylene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
cis-1,3-Dichloropropene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
trans-1,3-Dichloropropene	NĐ	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Diethyl Ether	ND	2.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	l		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,4-Dioxane	ND	50	μ g /L	1	V-16	SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
							•		

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-42

Sampled: 10/5/2009 12:30

Sample ID: 09J0115-03 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

		Y	olatile Organic Com	pounds by GC	C/MS				
			·				Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Styrene	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2,4-Trichlorobenzene	ND	1.0	µg/L	ì		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,1,2-Trichloroethane	ND	1.0	μg/Ł	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Trichtoroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 18:42	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		105	70-130					10/7/09 18:42	
Toluene-d8		98.2	70-130					10/7/09 18:42	
4-Bromofluorobenzene		98.2	70-130					10/7/09 18:42	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	105	70-130		10/7/09 18:42
Toluene-d8	98.2	70-130		10/7/09 18:42
4-Bromofluorobenzene	98.2	70-130		10/7/09 18:42

Project Location: Crane Manufacturing,

Sample Description;

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: CM-42

Sampled: 10/5/2009 12:30

Sample ID: 09J0115-03

Sample Matrix: Ground Water

		Pet	roleum Hydrocarbo	ns Analyses -	ЕРН				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analys
C9-C18 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
C19-C36 Aliphatics	ND	150	μ g/ L	I		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Anthracene	ND	2.0	μ g /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	CJM
Benzo(b)fluoranthene	ND	2.0	μg/L.	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
Benzo(g,h,i)perylene	ND	2.0	μ <i>g</i> /L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
Benzo(k)fluoranthene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
Fluoranthene	ND	2.0	µg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	СЈМ
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	CJM
2-Methylnaphthalene	ND	2.0	μ <i>g/</i> 1_			MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	СЈМ
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:38	CJM
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09-14:38	CJM
Pyrene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:38	CJM
Surrogates	,,, <u>,,</u> ,,	% Recovery	Recovery Limits		Flag				
Chlorooctadecane (COD)	,	77.9	40-140	·				10/8/09 14:38	
o-Terphenyl (OTP)		83.0	40-140					10/8/09 14:38	
2-Bromonaphthalene		93.9	40-140					10/8/09 14:38	
2-Fluorobiphenyl		98.7	40-140					10/8/09 14:38	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-42

Sampled: 10/5/2009 12:30

Sample ID: 09J0115-03

Petroleum Hy	drocarbons	Analyses -	VPH
--------------	------------	------------	-----

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,I	10/7/09	10/7/09 15:57	EEH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1,0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 15:57	EEH
Toluene	ND	1,0	μg/Ł	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 15:57	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 15:57	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		104	70-130					10/7/09 15:57	
2,5-Dibromotoluene (PID)		87.8	70-130					10/7/09 15:57	

Surrogates	% Recovery	Recovery Limits	Flag	
2,5-Dibromotoluene (FID)	104	70-130		10/7/09 15:57
2,5-Dibromotoluene (PID)	87.8	70-130	4	10/7/09 15:57

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: CM-42

Sampled: 10/5/2009 12:30

Sample 1D: 09J0115-03

			Metals Anal	lyses (Total)					
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic	ND	2,0	μg/L.	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT
Barium	ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT
Chromium	ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT
Mercury	ND	0,00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:19	MPF
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT
Silver	ND	2.5	µg/L	5		SW-846 6020A	10/7/09	10/8/09 15:41	KMT

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-34

Sampled: 10/5/2009 13:08

Sample ID: 09J0115-04
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Велгене	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Bromomethane	ND	5.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
2-Butanone (MEK)	ND	20	μ ϗ/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
n-ButyIbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Carbon Tetrachloride	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Chlorobenzene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Chloroethane	ND	2.0	μg/L	1 .		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Chloroform	ND	2,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
4-Chlorotoluene	ND	1.0	μg/Ł	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2-Dichlorobenzene	ND	1.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Dichlorodifluoromethane (Freon 12)	ND	2,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,1-Dichloroethylene	ND	1.0	րք/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,3-Dichloropropane	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
sis-1,3-Dichloropropene	ND	5,0	րց/ <u>է</u> րց/ <u>է</u>	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
rans-1,3-Dichloropropene	ND	0.50		1		SW-846 8260B	10/7/09		
Diethy I Ether	ND ND	2.0	μg/L ug/l					10/7/09 19:12	MFF
Diisopropyl Ether (DiPE)	ND ND		μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,4-Dioxane		0.50	μg/L Λ	1	V 14	SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Ethylbenzene	ND	50	ր ջ /L	1	V-16	SW-846 8260B	10/7/09	10/7/09 19:12	MFF
one in the contract of the con	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: CM-34

Sampled: 10/5/2009 13:08

Sample ID: 09J0115-04

		Vo	latile Organic Com	pounds by GC	:/MS				
Analyte	Results	ŘL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Foluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2,3-Trichlorobenzene	ND	5.0	μ g /L	Ī		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
l,1,1-Trichloroethane	NĐ	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
1,1,2-Trichloroethane	ND	1.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
richlorofluoromethane (Freon 11)	ND	2.0	μg/L	1 .		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
,2,3-Trichloropropane	ND	2.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
.3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
/inyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
n+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:12	MFF
Surrogates		% Recovery	Recovery Limits		Flag		****		****
,2-Dichloroethane-d4		103	70-130		·			10/7/09 19:12	
Toluene-d8		98,2	70-130					10/7/09 19:12	
I-Bromofluorobenzene		98.2	70-130					10/7/09 19:12	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-34

Sampled: 10/5/2009 13:08

Sample ID: 09J0115-04 Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - EPH

		Pe	troleum Hydrocarbo	ons Analyses -	ЕРН				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
C19-C36 Aliphatics	ND	150	μg/Ł	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Acenaphthene	ND	2.0	μg/Ľ	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:59	CJM
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:59	CJM
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Benzo(k)fluoranthene	ND	2.0	μg/L	I		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Chrysene	ND	2.0	µg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:59	СЈМ
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:59	СЈМ
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Indeno(1,2,3-cd)pyrene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:59	CJM
2-Methylnaphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 14:59	CJM
Naphthalene	ND	2.0	μ g /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	СЈМ
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	CJM
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 14:59	СЈМ
Surrogates		% Recovery	Recovery Limits		Flag				
Chlorooctadecane (COD)		59.7	40-140					10/8/09 14:59	
o-Terphenyl (OTP)		79.5	40-140					10/8/09 14:59	
2-Bromonaphthalene		91.6	40-140					10/8/09 14:59	
2-Fluorobiphenyl		96.1	40-140					10/8/09 14:59	

Surrogates	% Recovery	Recovery Limits	Flag	
Chlorooctadecane (COD)	59.7	40-140		10/8/09 14:59
o-Terphenyl (OTP)	79.5	40-140	,	10/8/09 14:59
2-Bromonaphthalene	91.6	40-140		10/8/09 14:59
2-Fluorobiphenyl	96.1	40-140		10/8/09 14:59

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: CM-34

Sampled: 10/5/2009 13:08

Sample ID: 09J0115-04

		Pet	roleum Hydrocarbo	ms Analyses -	VPH				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 16:46	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 16:46	EEH
Benzene	ND	1.0	μg/L	I		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 16:46	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 16:46	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		109	70-130	***			***************************************	10/7/09 16:46	
2,5-Dibromotoluene (PID)		88.7	70-130					10/7/09 16:46	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: CM-34

Sampled: 10/5/2009 13:08

Sample ID: 09J0115-04

	nałyte	Results	RL	1134.	Dil di	171		Date	Date/Time	
	mary to	Kesans	KL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Arsenic		ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:44	KMT
Barium		290	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:44	KMT
Cadmium		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15;44	KMT
Chromium		ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:44	KMT
Lead		ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:44	KMT
Mercury		ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:21	MPF
Selenium		ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:44	KMT
Silver		ND	2,5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:44	KMT

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: CM-39

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-05

		•••	Volatile Organic Co	ompounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Bromobenzene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Bromochloromethane	. ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	րք/Լ	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Carbon Disulfide	ND	3.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Chlorobenzene	NĐ	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Chloromethane	ND	2.0	μϗ/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
2-Chiorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
l,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	
1,2-Dichloropropane	ND	1.0	. υ μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09		MFF
2,2-Dichloropropane	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1-Dichloropropene	ND	2.0	г-о − µg/L	1		SW-846 8260B		10/7/09 19:42	MFF
cis-1,3-Dichloropropene	ND	5.0	ду/L	1			10/7/09	10/7/09 19:42	MFF
trans-1,3-Dichloropropene	ND	0.50				SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Diethyl Ether	ND	2.0	μg/L /	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,4-Dioxane	ND ND		µg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Ethylbenzene		50	μg/L	1	V-16	SW-846 8260B	10/7/09	10/7/09 19:42	MFF
	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 19:42	MFF

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: CM-39

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-05
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

		Y	olatile Organic Com	pounds by Go	CAMS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	, ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
p-lsopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1,0	μ g/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Naphthalene	33	2.0	μg/L	1	V-06	SW-846 8260B	10/7/09	10/7/09 19:42	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	µg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1,1-Trichloroethane	ND	1.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Trichloroethylene	ND	1.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μ ழ /L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2,3-Trichloropropane	ND	2.0	μ ϗ/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
m+p Xylene	ND	2,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 19:42	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		105	70-130					10/7/09 19:42	
Toluene-d8		98.2	70-130					10/7/09 19:42	
4-Bromofluorobenzene		100	70-130			()		10/7/09 19:42	

Project Location: Crane Manufacturing,

Sample Description:

94.5

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: CM-39

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-05

2-Fluorobiphenyl

Sample Matrix: Ground Water

		Pe	troleum Hydrocarbo	ns Analyses -	- EPH				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analys
C9-C18 Aliphatics	ND	150	μg/L	l		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
C19-C36 Aliphatics	ND	150	µg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Unadjusted C11-C22 Aromatics	140	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
C11-C22 Aromatics	110	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	СЈМ
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	СЈМ
Acenaphthylene	ND	2.0	µу/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	СЈМ
Benzo(a)anthracene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 15:20	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	СЈМ
Benzo(b)fluoranthene	ND	2.0	μg/L.	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	СЈМ
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Fluoranthene	ND	2.0	µg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
2-Methylnaphthalene	4.4	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Naphthalene	16	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Phenanthrene	5.5	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	CJM
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:20	СЈМ
Surrogates		% Recovery	Recovery Limits		Flag	36.5 ° EVIII			
Chlorooctadecane (COD)		58.6	40-140					10/8/09 15:20	
o-Terphenyl (OTP)		77.4	40-140					10/8/09 15:20	
2-Bromonaphthalene		88.1	40-140					10/8/09 15:20	
2-Fluorobishenvl		04.5	40 140					TO 10 100 TT TO	

40-140

10/8/09 15:20

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-39

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-05

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1	8	MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
Naphthalene	29	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 17:34	EEH ·
m+p Xylene	ND	2.0	μg/L	I		MADEP-VPH-04-1,1	10/7/09	10/7/09 17;34	EEH
o-Xylene	ND	1.0	μg/L	l		MADEP-VPH-04-1,1	10/7/09	10/7/09 17:34	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		117	70-130					10/7/09 17:34	
2,5-Dibromotoluene (PID)		93.8	70-130					10/7/09 17:34	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-39

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-05

			Metals Anal	yses (Total)					
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Anaiyst
Arsenic	ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT
Barium	ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT
Cadmium	ND	2.5	μ g/ L	5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT
Chromium	ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:23	MPF
Selenium	ND	25	μg/L	. 5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT
Silver	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 15:48	KMT

Project Location: Crane Manufacturing,

Sample Description:

Date Received: 10/5/2009 Field Sample #: MW-35

Sampled: 10/5/2009 13:56

Sample ID: 09J0115-06
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by GO	C/MS	•			
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
tert-Amyl Methyl Ether (TAME)	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Benzene	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Bromoform	ND	5.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
n-Butylbenzene	1.9	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
sec-Butylbenzene	1.2	1.0	μg/L	1		\$W-846 8260B	10/7/09	10/7/09 22:12	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF ·
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Carbon Tetrachloride	NĐ	1.0	µg/L	Ι.		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Chlorodibromomethane	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Dibromomethane	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1-Dichloroethaue	ND	1.0	μ <u>υ</u> /L	. 1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
2,2-Dichloropropane	ND	1.0	μg/∟	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
cís-1,3-Dichloropropene	ND	5.0	րց/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
trans-1,3-Dichloropropene	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Diethy 1 Ether	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	·		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,4-Dioxane	ND	50	րք/L	1	V-16	SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Ethylb enzene	1.2	1,0	ր ց ։∟ ր ց /Լ	l	F-10	SW-846 8260B	10/7/09	10/7/09 22:12	MFF
÷	1.4	4.0	har			Q 11 - D-10 0200D	10/1/07	10/1/07 22.12	1411.1.

Work Order: 09J0115

Project Location: Crane Manufacturing,

Sample Description:

101

70-130

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: MW-35

Sampled: 10/5/2009 13:56

Sample ID: 09J0115-06

4-Bromofluorobenzene

Sample Matrix: Ground Water

		Ve	olatile Organic Com	pounds by GC	C/MS			 .	
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
p-lsopropyltoluene (p-Cymene)	1.5	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Naphthalene	7.2	2.0	μg/L	ł	V-06	SW-846 8260B	10/7/09	10/7/09 22:12	MFF
n-Propylbenzene	1.8	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Tetrahy drofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Toluene	ND	1.0	μg/L	1		- SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2,3-Trichlorobenzene	ND	5,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,1,2-Trichloroethane	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,2,4-Trimethylbenzene	15	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
1,3,5-Trimethylbenzene	3.7	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
o-Xylene	2.8	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:12	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		101	70-130					10/7/09 22:12	
Toluene-d8		99.4	70-130					10/7/09 22:12	

10/7/09 22:12

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: MW-35

Sampled: 10/5/2009 13:56

Sample ID: 09J0115-06 Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - EPH

		Pet	troleum Hydrocarbo	ns Analyses -	EPH				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Unadjusted C11-C22 Aromatics	430	100	ր ք/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
C11-C22 Aromatics	410	100	μ <u>υ</u> /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Acenaphthene	2,4	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Acenaphthylene	7,8	2,0	μ g/ L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Anthracene	ND	2.0	μg/L	Ī		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Benzo(a)anthracene	ND	2.0	µg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Benzo(k)fluoranthene	ND	2.0	µg/L	ł		MADEP-EPH-04-1,1	10/7/09	10/8/09 15:42	CJM
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Fluoranthene	ND	2.0	µg∕L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	СЈМ
Fluorene	3.7	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
2-Methylnaphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Naphthalene	4.4	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 15:42	СЈМ
Phenanthrene	2,8	2.0	μg/L	J		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	СЈМ
Pyrene	ND	2.0	μ g /L	I		MADEP-EPH-04-1.1	10/7/09	10/8/09 15:42	CJM
Surrogates		% Recovery	Recovery Limits		Flag				
Chlorocetadecane (COD)		76.3	40-140					10/8/09 15:42	
o-Terphenyl (OTP)		85.2	40-140					10/8/09 15:42	
2-Bromonaphthalene		90.5	40-140					10/8/09 15:42	
2-Fluorobiphenyl		98.5	40-140					10/8/09 15:42	

Surrogates	% Recovery	Recovery Limits	Flag	
Chlorocetadecane (COD)	76.3	40-140		10/8/09 15:42
o-Terphenyl (OTP)	85.2	40-140		10/8/09 15:42
2-Bromonaphthalene	90.5	40-140		10/8/09 15:42
2-Fluorobiphenyl	98.5	40-140		10/8/09 15:42

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: MW-35

Sampled: 10/5/2009 13:56

Sample ID: 09J0115-06

Petroleum Hydrocarbons Analyses - VPH										
Aualyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst	
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
C5-C8 Aliphatics	ND	100	μg/L	l		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
Unadjusted C9-C12 Aliphatics	290	100	μg/L	l		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
C9-C12 Aliphatics	130	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
C9-C10 Aromatics	160	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 3:13	EEH	
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
Ethylbenzene	1.3	1.0	μg/L	l		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 3:13	EEH	
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 3:13	EEH	
o-Xylene	2.8	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 3:13	EEH	
Surrogates		% Recovery	Recovery Limits		Flag					
2,5-Dibromotoluene (FID)		129	70-130					10/8/09 3:13	·····	
2,5-Dibromotoluene (PID)		102	70-130					10/8/09 3:13		

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: MW-35

Sampled: 10/5/2009 13:56

Sample ID: 09J0115-06
Sample Matrix: Ground Water

Metals	Analyses	(Total)

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic	ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT
Barium	NĐ	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT
Chromium	ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:24	MPF
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT
Silver	ND	2.5	μ g /L	5		SW-846 6020A	10/7/09	10/8/09 16:05	KMT

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-1

Sampled: 10/5/2009 14:33

Sample ID: 09J0115-07

Sample Watta. Ground Water									
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L.	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
tert-Amyl Methyl Ether (TAME)	ND	0,50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Bromobenzene	ND	1,0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Bromoform	ND	5.0	μg/L	1 "		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
n-Butylbenzene	1.2	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Chlorodibromomethane	ND	0.50	μg/L	1		\$W-846 8260B	10/12/09	10/12/09 14:17	LBD
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Chloromethane	ND	2.0	μ <i>g/</i> L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
2-Chiorotoluene	ND	1.0	µg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
4-Chlorotoluene	ND	1.0	μg/L	I		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD ·
1,2-Dibromoethane (EDB)	ND	0.50	μ g/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Dichloredifluoromethane (Freen 12)	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
l,l-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
I,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
2,2-Dichloropropane	ND	1,0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
cis-1,3-Dichloropropene	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
trans-1,3-Dichleropropene	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Diethyl Ether	ND	2.0	μg/L	ı		SW-846 8260B	10/12/09		
Diisopropyl Ether (DIPE)	ND	0.50	րջ/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260B		10/12/09 14:17	LBD
Ethylbenzene	ND	1.0		i	A-10		10/12/09	10/12/09 14:17	LBD
- · · · · · · · · · · · · · · · · · · ·	1417	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD

Project Location: Crane Manufacturing,

Sample Description:

Work Order; 09J0115

Date Received: 10/5/2009 Field Sample #: Existing-1

Sampled: 10/5/2009 14:33

Sample ID: 09J0115-07 Sample Matrix: Ground Water

Volatile Organic Compounds b

		Y	olame Organic Com	pounds by GC	JIMS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
p-lsopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
4-Methyl-2-pentanone (M1BK)	ND	10	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Naphthalene	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
n-Propylbenzene	ND	1.0	μ g/ Լ	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD.
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
I,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD .
Trichloroethylene	ND	1.0	μg/Ł	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD.
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 14:17	LBD
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		104	70-130					10/12/09 14:17	
Toluene-d8		92.4	70-130					10/12/09 14:17	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-1

Sampled: 10/5/2009 14:33

96.4

Sample ID: 09J0115-07

2-Fluorobiphenyl

Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - EPH										
Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys		
ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM		
ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:03	СЈМ		
360	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09		СЈМ		
340	100	μg/L	I		MADEP-EPH-04-1.1	10/7/09		СЈМ		
ND	2.0	μg/L	l		MADEP-EPH-04-1.1	10/7/09		СЈМ		
5,3	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		СЈМ		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1			СЈМ		
ND	2.0		1		MADEP-EPH-04-1.1			CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1			CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1,1			CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1			CJM		
4.7	2.0	μg/L	ì		MADEP-EPH-04-1.1			CJM ·		
ND	2.0		1		MADEP-EPH-04-1,1			CJM		
2.7	2.0	μg/L	1		MADEP-EPH-04-1.1			CJM		
8.1	2.0		1		MADEP-EPH-04-1,1			СЈМ		
ND	2.0		1		MADEP-EPH-04-1.1			CJM		
ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:03	CJM		
****	% Recovery	Recovery Limits		Flag			1-84e			
	73.2	40-140					10/8/09 16:03			
	87.0	40-140					10/8/09 16:03			
	90.8	40-140					10/8/09 16:03			
	ND ND 360 340 ND 5.3 ND ND ND ND ND ND ND ND ND ND ND ND ND	Results RL ND	Results RL Units ND 150 μg/L ND 150 μg/L 360 100 μg/L 340 100 μg/L ND 2.0 μg/L </td <td> Results RL Units Dilution </td> <td> Results RL Units Dilution Flag </td> <td>Results RL Units Dilution Flag Method ND 150 µg/L 1 MADEP-EPH-04-1.1 ND 150 µg/L 1 MADEP-EPH-04-1.1 360 100 µg/L 1 MADEP-EPH-04-1.1 340 100 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1</td> <td>Results RL Units Dilution Flag Method Prepared ND 150 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 150 µg/L 1 MADEP-EPH-04-1.1 10/7/09 360 100 µg/L 1 MADEP-EPH-04-1.1 10/7/09 340 100 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1</td> <td>Results RL Units Dilution Flag Method Prepared Prepared Analyzed Analyzed Analyzed Analyzed ND 150 μg/L 1 MADEP-EPH-04-1.1 107/09 10/8/09 16-03 ND 150 μg/L 1 MADEP-EPH-04-1.1 107/09 10/8/09 16-03 360 100 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 340 100 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1</td>	Results RL Units Dilution	Results RL Units Dilution Flag	Results RL Units Dilution Flag Method ND 150 µg/L 1 MADEP-EPH-04-1.1 ND 150 µg/L 1 MADEP-EPH-04-1.1 360 100 µg/L 1 MADEP-EPH-04-1.1 340 100 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 ND 2.0 µg/L 1 MADEP-EPH-04-1.1	Results RL Units Dilution Flag Method Prepared ND 150 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 150 µg/L 1 MADEP-EPH-04-1.1 10/7/09 360 100 µg/L 1 MADEP-EPH-04-1.1 10/7/09 340 100 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1 MADEP-EPH-04-1.1 10/7/09 ND 2.0 µg/L 1	Results RL Units Dilution Flag Method Prepared Prepared Analyzed Analyzed Analyzed Analyzed ND 150 μg/L 1 MADEP-EPH-04-1.1 107/09 10/8/09 16-03 ND 150 μg/L 1 MADEP-EPH-04-1.1 107/09 10/8/09 16-03 360 100 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 340 100 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1 MADEP-EPH-04-1.1 10/7/09 10/8/09 16-03 ND 2.0 μg/L 1		

40-140

10/8/09 16:03

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-1

Sampled: 10/5/2009 14:33

Sample ID: 09J0115-07
Sample Matrix: Ground Water

Petroleum	Hydrocarbons	Analyses - VPH
-----------	--------------	----------------

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1 .		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 18:22	EEH
Unadjusted C9-C12 Aliphatics	270	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
C9-C12 Aliphatics	120	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
C9-C10 Aromatics	150	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 18;22	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 18:22	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	µg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 18:22	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 18:22	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 18:22	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		106	70-130					10/7/09 18:22	
2,5-Dibromotoluene (PID)		94.9	70-130					10/7/09 18:22	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-1

Sampled: 10/5/2009 14:33

Sample ID: 09J0115-07

Metals Analyses (Total)											
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst		
Arsenic	ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		
Barium	ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		
Chromium	ND	50	μg/ L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:33	MPF		
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		
Silver	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:08	KMT		

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: Existing-2 Sample ID: 09J0115-08

Sampled: 10/5/2009 15:10

			_				Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	µg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Bromobenzene	ND	1.0	μ g/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Bromochloromethane	ND	1.0	µg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Bromodichloromethane	ND	0.1	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF.
n-Butylbenzene	ND	1.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
sec-Butylbenzene	2.2	1.0	μg/L	1		SW-846-8260B	10/7/09	10/7/09 20:42	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Carbon Disulfide	ND	3,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20;42	MFF
Chlorodibromomethane	ND	0.50	μg/ L	1		SW-846-8260B	10/7/09	10/7/09 20:42	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846-8260B	10/7/09	10/7/09 20:42	MFF
2-Chlorotoluene	NĐ	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,4-Dichlerobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Dichlorodiffuoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,1-Dichloroethylene	ND	1,0	μg/L	1		\$W-846 8260B	10/7/09	10/7/09 20:42	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20;42	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
cis-1,3-Dichloropropene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Diisopropyl Ether (DIPE)	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,4-Dioxane	ND	50	μg/L μg/L	1	V-16	SW-846 8260B	10/7/09		MFF
Ethylbenzene	NĐ	1.0	μg/L	1	r-10	SW-846 8260B		10/7/09 20:42	MFF
•	112	1.0	hst D	1		Q V7 -040 020UD	10/7/09	10/7/09 20:42	MFF

Project Location: Crane Manufacturing,

Sample Description;

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-2

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-08

		V	olatile Organic Com	pounds by GO	C/MS				
Analyte	Results	RL .	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analys
Hexachlorobutadiene	ŊD	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Isopropylbenzene (Cumene)	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Tetrachloroethylene	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Tetrabydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Toluene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
t,I,I-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Trichloroethylene	ND	1.0	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Vinyl Chloride	ND	2,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
n+p Xylene	ND	2,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 20:42	MFF
Surrogates		% Recovery	Recovery Limits		Flag		10,7,0,	10///07 20.42	1711, 1
,2-Dichloroethane-d4		101	70-130					10/7/09 20:42	
Foluene-d8		98.4	70-130					10/7/09 20:42	
4-Bromofluorobenzene		102	70-130					10/7/09 20:42	

Project Location: Crane Manufacturing,

Sample Description;

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-2

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-08
Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - EPH

		Ге	troleum Hydrocarb	ons Anaiyses -	EPH				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:24	CJM
Unadjusted C11-C22 Aromatics	170	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
C11-C22 Aromatics	170	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Anthracene	ND	2.0	µg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:24	CJM
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:24	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM.
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Benzo(g,h,i)perylene	ND	2.0	μg/L	I		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	СЈМ
Benzo(k)fluoranthene	. ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	СЈМ
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Dibenz(a,h)anthracene	· ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	CJM
Fluorene	· ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	СЈМ
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:24	CJM
2-Methylnaphthalene	ND	2.0	μ g /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	СЈМ
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	СЈМ
Phenanthrene	ND	2,0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:24	CJM
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:24	СЈМ
Surrogates		% Recovery	Recovery Limits		Flag				
Chlorooctadecane (COD)		70.2	40-140					10/8/09 16:24	
o-Terphenyl (OTP)		80.7	40-140					10/8/09 16:24	
2-Bromonaphthalene		93.2	40-140					10/8/09 16:24	
2-Fluorobiphenyl		97.7	40-140					10/8/09 16:24	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: Existing-2

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-08

		Pet	roleum Hydrocarbo	ns Analyses -	VPH				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
Unadjusted C9-C12 Aliphatics	170	100	μ g/ L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
C9-C12 Aliphatics	170	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 19:11	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 19:11	EEH
m+p Xylene	ND	2.0	μ g /L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
o-Xylene	· ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:11	EEH
Surrogates		% Recovery	Recovery Limits		Flag			·	
2,5-Dibromotoluene (FID)		114	70-130	····				10/7/09 19:11	
2,5-Dibromotoluene (PID)		91.6	70-130					10/7/09 19:11	

Analyte

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

5

5

 $\mu g/L$

μg/L

Project Location: Crane Manufacturing,

Sample Description:

RL

2.0

250

2,5

50

5,0

0.00010

25

2,5

Results

ND

ND

8.4

ND

ND

ND

ND

ND

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-2

Sampled: 10/5/2009 15:10

Sample ID: 09J0115-08

Arsenic

Barium

Cadmium

Chromium

Lead

Mercury

Selenium

Silver

Sample Matrix: Ground Water

Metals Ana	lyses (Total)					
Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:12	KMT
μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:12	KMT
μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:12	KMT
μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:12	KMT
μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:12	KMT
mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:35	MPF

SW-846 6020A

SW-846 6020A

10/7/09

10/7/09

10/8/09 16:12

10/8/09 16:12

KMT

KMT

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: CM-37

Sampled: 10/5/2009 15:35

Sample ID: 09J0115-09

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
tert-Arnyl Methyl Ether (TAME)	ND	0.50	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Benzene	ND	1.0	μg/L	i		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Bromochloromethane	ND	0.1	μg/ Ł	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Bromomethane	ND	5.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	I		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Carbon Disulfide	ND	3.0	μg/L	1		. SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Chlorodibromomethane	ND	0,50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Chloromethane	ND	2.0	μg/L	1 ·		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		\$W-846 8260B	10/7/09	10/7/09 21:12	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
I,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
cis-1,3-Dichloropropene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Ethylbonzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09		
			r.o	•		5.7. 570 0200D	10/7/07	10/7/09 21:12	MFF

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-37

Sampled: 10/5/2009 15:35

Sample ID: 09J0115-09

Sample Matrix: Ground Water									
		V	olatile Organic Com	pounds by G(C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Isopropylbenzene (Cumene)	ND	1,0	μ <u>υ</u> /L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μ <u>α</u> /L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Naphthalene	ND	2.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Styrene	NĐ	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21;12	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Tetrachloroethylene	ND	1.0	μg/Ľ	l		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Toluene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,1,1-Trichloroethane	NĎ	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	ı		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:12	MFF
Surrogates	-	% Recovery	Recovery Limits		Flag				
I,2-Dichloroethane-d4		103	70-130					10/7/09 21:12	
Toluene-d8		100	70-130					10/7/09 21:12	

Project Location: Crane Manufacturing,

Sample Description:

Date Received: 10/5/2009 Field Sample #: CM-37

Sampled: 10/5/2009 15:35

Sample ID: 09J0115-09

Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - EPH

		10	doleum Hydrocarbi	ous Analyses	- 6.1 11				
Analyte	D	RL					Date	Date/Time	
C9-C18 Aliphatics	Results		Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
•	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
C19-C36 Aliphatics	ND	150	μg/L	i		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Unadjusted C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:45	CJM
C11-C22 Aromatics	ND	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:45	СЈМ
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:45	СЈМ
Benzo(a)pyrene	ND	2.0	μg/L	l		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Benzo(b)fluoranthene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Chrysene	ND	2.0	μg/L	l		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
2-Methylnaphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 16:45	CJM
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	CJM
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 16:45	СЈМ
Surrogates		% Recovery	Recovery Limits		Flag		~	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Chlorooctadecane (COD)		55,8	40-140					10/8/09 16:45	
o-Terphenyl (OTP)		88.0	40-140					10/8/09 16:45	
2-Bromonaphthalene		113	40-140					10/8/09 16:45	
2-Fluorobiohenvl		120	40.140					10/0/00 15 1-	

Work Order: 09J0115

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: CM-37

Sampled: 10/5/2009 15:35

Sample ID: 09J0115-09

Petroleum	Hydrocarbons	Analyses -	VPH
-----------	--------------	------------	-----

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analysi
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1, I	10/7/09	10/7/09 19:59	EEH
C5-C8 Aliphatics	ND	100	μ g /L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μ g/Ĺ	Ī		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	ÉÉH
C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 19:59	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 19:59	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		104	70-130					10/7/09 19:59	
2.5-Dibromotoluene (PID)		00.0	50 120						

Surrogates	% Recovery	Recovery Limits	Flag	
2,5-Dibromotoluene (FID)	104	70-130		10/7/09 19:59
2,5-Dibromotoluene (PID)	88.0	70-130		10/7/09 19:59

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: CM-37

Sampled: 10/5/2009 15:35

Sample ID: 09J0115-09

				Metais Ana	lyses (Total)					
								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Arsenic		ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT
Barium		ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT
Cadmium		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT
Chromium		ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT
Lead		6.1	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT
Мегсыгу		ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:37	MPF
Selenium		ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT
Silver		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:15	KMT

Project Location: Crane Manufacturing,

Sample Description:

Date Received: 10/5/2009
Field Sample #: Existing-3
Sample ID: 09J0115-10

Sample Matrix: Ground Water

Sampled: 10/5/2009 15:50

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	l	riag	SW-846 8260B	10/7/09	10/7/09 21:42	Analyst MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
sec-Butylbenzene	1.1	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21;42	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Carbon Disulfide	ND	3.0	μg/L	1		SW-846,8260B	10/7/09	10/7/09 21:42	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Chloro dibromomethane	ND	0.50	μg/L	1		SW-846:8260B	10/7/09	10/7/09 21:42	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
2-Chlorotoluene	ND	1.0	μg/L,	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
4-Chlorotoluene	ND	1.0	дg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
I,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,1-Dichloroethane	ND	1.0	µg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2-Dichloroethane	ND	1.0	µg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
I,1-Dichloroethylene	ND	1.0	µg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
cis-I,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
trans-1_2-Dichloroethylene	ND	1.0	րջ/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	
2,2-Dichloropropane	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
cis-1,3-Dichloropropene	ND	5.0		1					MFF
trans-1_3-Dichloropropene	ND ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Diethy I Ether	ND ND	2,0	μg/L			SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Disopropyl Ether (DIPE)	ND ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
,4-Dioxane	ND ND	50	μg/L	1	V 14	SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Ethylbenzene	ND ND		μg/L /I	1	V-16	SW-846 8260B	10/7/09	10/7/09 21:42	MFF
,	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF

Work Order: 09J0115

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009

Field Sample #: Existing-3

Sampled: 10/5/2009 15:50

Sample ID: 09J0115-10

Volatile Organic	Compounds	Ьy	GC/MS
------------------	-----------	----	-------

4	ъ. т.						Date	Date/Time	
Analyte Hexachlorobutadiene	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Isopropy!benzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,1,1,2-Tetrachioroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846-8260B	10/7/09	10/7/09 21:42	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846-8260B	10/7/09	10/7/09 21:42	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Trichloroethylene	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Trichlorofluoromethane (Freon II)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
1,3,5-Trimethylbenzene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Vinyl Chloride	ND	2.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 21:42	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		99.7	70-130		-	,-2,000-		10/7/09 21:42	
77-1								· · · · ·	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	99.7	70-130		10/7/09 21:42
Toluene-d8	97.6	70-130		10/7/09 21:42
4-Bromofluorobenzene	99.2	70-130		10/7/09 21:42

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009 Field Sample #: Existing-3

Sampled: 10/5/2009 15:50

Sample ID: 09J0115-10 Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - EPH

				•	EPH				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Á]
C9-C18 Aliphatics	ND	150	μg/L	1	r mg	MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	Analyst CJM
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Unadjusted C11-C22 Aromatics	180	100	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 17:06	CJM
C11-C22 Aromatics	180	100	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 17:06	
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM
Acenaphthylene	ND	2.0	μg/L μg/L	1		MADEP-EPH-04-1.1		10/8/09 17:06	CJM
Anthracene	ND	2.0					10/7/09	10/8/09 17:06	CJM
Benzo(a)anthracene	ND ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Benzo(a)pyrene			μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Benzo(b)fluoranthène	ND	2.0	μg/L	i		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
14	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Chrysene	ND	2.0	μ g/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Dibenz(a,h)anthracene	. ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	СЈМ
Fluoranthene	ND	2.0	μg/L	I		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	СЈМ
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	СІМ
2-Methylnaphthalene	ND	2.0	μg/L	l		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	СЈМ
Naphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Phenanthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	CJM
Pyrene	· ND	2.0	μy/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 17:06	СЈМ
Surrogates		% Recovery	Recovery Limits		Flag		***************************************		
Chlorooctadecane (COD)		64.6	40-140					10/8/09 17:06	
o-Terphenyl (OTP)		95.1	40-140					10/8/09 17:06	
2-Bromonaphthalene		105	40-140					10/8/09 17:06	
2-Fluorobiphenyl		111	40-140					10/8/09 17:06	

Project Location: Crane Manufacturing,

Sample Description:

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-3

Sampled: 10/5/2009 15:50

Sample ID: 0930115-10
Sample Matrix: Ground Water

Petroleum Hy	drocarbons Analyses - VPH
--------------	---------------------------

		10.	. O.Cum II, ui ocui b	ons innigacs -	7.2.2.2				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 20:47	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
Unadjusted C9-C12 Aliphatics	150	100	μg/L .	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
C9-C12 Aliphatics	150	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
C9-C10 Aromatics	ND	100	μg/L	ì		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 20:47	EEH
Ethylbenzene	ND	1.0	μg/L	Ī		MADEP-VPH-04-1,1	10/7/09	10/7/09 20:47	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/7/09 20:47	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/7/09 20:47	ЕЕН
Surrogates		% Recovery	Recovery Limits	3	Flag				·
2,5-Dibromotoluene (FID)		118	70-130	******				10/7/09 20:47	····
2,5-Dibromotoluene (PID)		95.9	70-130					10/7/09 20:47	

Project Location: Crane Manufacturing,

Sample Description:

ND

2.5

Work Order: 09J0115

Date Received: 10/5/2009
Field Sample #: Existing-3

Sampled: 10/5/2009 15:50

Sample ID: 09J0115-10
Sample Matrix: Ground Water

Silver

	Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic		7,5	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:19	KMT
Barium		ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:19	KMT
Cadmium		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:19	KMT
Chromium		ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:19	KMT
Lead		ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:19	KMT
Mercury		ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:38	MPF
Selenium		ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:19	KMT

5

SW-846 6020A

10/7/09

10/8/09 16;19

KMT

μg/L

Sample Extraction Data

Prep Method: SW-846 3510C-MADEP-EPH-04-1.1

Batch	lnitial [mL]	Final [mL]	Date	
B005843	1000	2	10/07/09	·
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
B005843	1000	2	10/07/09	
	B005843 B005843 B005843 B005843 B005843 B005843 B005843 B005843	B005843 1000 B005843 1000 B005843 1000 B005843 1000 B005843 1000 B005843 1000 B005843 1000 B005843 1000 B005843 1000 B005843 1000	B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2 B005843 1000 2	B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09 B005843 1000 2 10/07/09

Prep Method: MA VPH-MADEP-VPH-04-1.1

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date	
09J0115-01 [CM-17]	B005829	5	5	10/07/09	
09J0115-02 [CM-36]	B005829	5	5	10/07/09	
09J0115-03 [CM-42]	B005829	5	5	10/07/09	
09J0115-04 [CM-34]	B005829	5	5	10/07/09	
09J0115-05 [CM-39]	B005829	5	5	10/07/09	
09J0115-06 [MW-35]	B005829	. 5	5	10/07/09	
09J0115-07 [Existing-I]	B005829	5	5	10/07/09	
09J0115-08 [Existing-2]	B005829	5	5	10/07/09	
09J0115-09 [CM-37]	B005829	5	5	10/07/09	
09J0115-10 [Existing-3]	B005829	5	5 .	10/07/09	

Prep Method: SW-846 3005A-SW-846 6020A

Lab Number [Field 1D]	Batch	Initial [mL]	Final [mL]	Date	
09J0115-01 [CM-17]	B005862	50	50	10/07/09	
09J0115-02 [CM-36]	B005862	50	50	10/07/09	
09J0115-03 [CM-42]	B005862	50	50	10/07/09	
09J0115-04 [CM-34]	B005862	50	50	10/07/09	
09J0115-05 [CM-39]	B005862	50	50	10/07/09	
09J0115-06 [MW-35]	B005862	50	50	10/07/09	
09J0115-07 [Existing-1]	B005862	50	50	10/07/09	
09J0115-08 [Existing-2]	B005862	50	50	10/07/09	
09J0115-09 [CM-37]	B005862	50	50	10/07/09	
09J0115-10 [Existing-3]	B005862	50	50	10/07/09	

Prep Method: SW-846 7470A Prep-SW-846 7470A

Lab Number [Field 1D]	Batch	Initial [mL]	Final [mL]	Date	
09J0115-01 [CM-17]	B005873	6	6	10/07/09	·····
09J0115-O2 [CM-36]	B005873	6	6	10/07/09	
09J0115-O3 [CM-42]	B005873	6	6	10/07/09	
09J0315-O4 [CM-34]	B005873	6	6	10/07/09	
09J0115-05 [CM-39]	B005873	6	6	10/07/09	
09J0115-O6 [MW-35]	B005873	6	6	10/07/09	
09J0115-O7 [Existing-1]	B005873	6	6	10/07/09	
09J0115-O8 [Existing-2]	B005873	6	6	10/07/09	
09J0115-O9 [CM-37]	B005873	6	6	10/07/09	

Sample Extraction Data

Prep Method: SW-846 7470A Prep-SW-846 7470A

			Date	
09J0115-10 [Existing-3] B005873	6	6	10/07/09	

Prep Method: SW-846 5030B-SW-846 8260B

Lab Number [Field 1D]	Batch	initial [mL]	Final (mL)	Date	
09J0115-01 [CM-17]	B005880	5	5	10/07/09	
09J0115-02 [CM-36]	B005880	5	5	10/07/09	
09J0115-03 [CM-42]	B005880	5	5	10/07/09	
09J0115-04 [CM-34]	B005880	5	5	10/07/09	
09J0115-05 [CM-39]	B005880	5	5	10/07/09	
09J0115-06 [MW-35]	B005880	5	5	10/07/09	
09J0115-08 [Existing-2]	B005880	5	5	10/07/09	
09J0115-09 [CM-37]	B005880	5	5	10/07/09	
09J0115-10 [Existing-3]	B005880	5	5	10/07/09	

Prep Method: SW-846 5030B-SW-846 8260B

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	4	Date	
09J0115-07 [Existing-1]	B005943	5	5		10/12/09	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005880 - SW-846 5030B										
Blank (B005880-BLK1)				Prepared &	Analyzed: 10	/07/09				
Acetone	ND	50	μg/L							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu \mathbf{g}/\mathbf{L}$							
Benzene	ND	1.0	μg/L							
Bromobenzene	ND	1.0	μg/L							
Bromochloromethane	ND	1.0	μg/L							
Bromodichioromethane	ND	1.0	μg/L							
Bromoform	ND	5.0	μg/L							
Bromomethane	ND	5.0	μg/L							
2-Butanone (MEK)	ND	20	μg/L							
n-Butylbenzene	ND	1.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Buty Ibenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0,50	μg/L							
Carbon Disulfide	ND	3.0	μg/L							
Carbon Tetrachloride	ND	1.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chloroethane	ND	2.0	μg/L							
Chloroform	ND	2.0	μg/L							
Chloromethane	ND	2.0	μg/L							
2-Chlorotoluene	ND	1.0	μg/L							
4-Chlorotoluene	ND	1.0	μg/L				٠,			
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L							
1,2-Dibromoethane (EDB)	ND	0.50	μg/L							
Dibromomethane	ND	1.0	μg/L							
1,2-Dichlorobenzene	ND	1.0	μg/L							
1,3-Dichlorobenzene	ND	1.0	μg/L							
1,4-Dichlorobenzene	ND	1.0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1.0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
1,1-Dichloroethylene	ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND	1.0	μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μ <u>ց</u> /L							
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	0,50	μg/L							
2,2-Dichloropropane	ND		μg/L							
1,1-Dichloropropene		1.0	μg/L							
cis-1,3-Dichloropropene	ND	2.0	μg/L							
trans-1,3-Dichloropropene	ND	5.0	μg/L							
	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Disopropyl Ether (DIPE)	ND	0.50	μg/L							
l,4-Dioxane	ND	50	μg/L							V-16
Ethylbenzene	NĐ	1.0	μg/L							
Hexachlorobutadiene	ND	1.0	μg/L							
2-Hexanone (MBK)	ND	10	$\mu g/L$							
sopropylbenzene (Cumene)	ND	1.0	$\mu g/L$							
o-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
Methylene Chloride	ND	5.0	μg/L							
l-Methyl-2-pentanome (MIBK)	ND	10	μg/L							
Naphthalene	ND	2.0	μg/L							

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005880 - SW-846 5030B										
Blank (B005880-BLK1)				Prepared & A	Analyzed: 10/	/07/09				
n-Propylbenzene	ND	1.0	μg/L			•				
Styrene	ND	1.0	μg/L							
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L							
Tetrachloroethylene	ND	1.0	μg/L							
Tetrahydrofuran	ND	10	μg/L							
Toluene	ND	1.0	μg/L							
1,2,3-Trichlorobenzene	ND	5.0	μg/L							
I,2,4-Trichlorobenzene	ND	1.0	μg/L							
l,l,l-Trichloroethane	ND	1.0	μg/L							
l,l,2-Trichloroethane	ND	1.0	μg/L							
Frichloroethylene	ND	1.0	μg/L							
Frichlorofluoromethane (Freou II)	ND	2,0	μg/L "							
1,2,3-Trichloropropane 1,2,4-Trimethylbenzene	ND	2.0	μg/L							
	ND	1.0	μg/L							
l,3,5-Trimethylbenzene Vinyl Chloride	ND ND	1.0	μ g/ L							
n+p Xylene	ND ND	2.0	μg/L			-				
-Xylene		2.0	μg/L			•				
	ND	1.0	μg/L							-
surrogate: 1,2-Dichloroethane-d4	25.1		μg/L	25.0		100	70-130			
urrogate: Toluene-d8	24.7		μg/L	25.0		98,9	70-130			
urrogate: 4-Bromofluorobenzene	25.0		μg/L	25.0		99.9	70-130			
CS (B005880-BS1)				Prepared & A	nalyzed: 10/0	07/09				
cetone	107	50	μg/L	100		107	70-160			
ert-Amyl Methyl Ether (TAME)	10,6	0.50	μg/L	10.0		106	70-130			
Senzene	9.60	1.0	μ g /L	10.0		96.0	70-130			
romobenzene	9.49	1.0	μg/L	10.0		94.9	70-130			
Bromochloromethane	11.3	1.0	μg/L	10.0		113	70-130			
Fromodichloromethane	7.49	1.0	μg/L	10.0		74.9	70-130			
Bromoform	7.79	5.0	μg/L	10,0		77.9	70-130			
romomethane	5.74	5,0	$\mu g/L$	10.0		57.4	40-160			
-Butanone (MEK)	106	20	μg/L	100		106	40-160			
-Butylbenzene	9,25	1.0	μg/L	10.0		92.5	70-130			
ec-Butylbenzene	9.57	1.0	μg/L	10.0		95.7	70-130			
ert-Butylbenzene	9.94	1.0	μg/L	10.0		99.4	70-130			
ert-Butyl Ethyl Ether (TBEE)	10.8	0.50	μg/L	10.0		108	70-130			
Carbon Disulfide	8.86	3.0	μg/L	10.0		88.6	70-130			
arbon Tetrachloride hlorobenzene	8,53	1.0	μg/L 	10.0		85.3	70-130			
	9.68	1.0	με/L	10,0		96,8	70-130			
hiorodibromomethane hioroethane	7.36	0.50	μg/L ″	10.0		73.6	70-130			
hloroform	9.14	2.0	μg/L	10.0		91.4	70-130			
ntoronorm hloromethane	10.5	2.0	μg/L	10.0		105	70-130			
nioromemane Chlorotoluene	6.99	2.0	μg/L	10.0		69.9	40-160			
Chlorotoluene	9.97	1.0	μg/L	10.0		99.7	70-130			
	9.85	1.0	μg/L	10.0		98.5	70-130			
2-Dibromo-3-chloropropane (DBCP) 2-Dibromoethane (EDB)	7.99	5.0	μg/L ″	10.0		79.9	70-130			
bromornethane (EDB)	9.92	0.50	μg/L	10.0		99.2	70-130			
promometnane 2-Dichlorobenzene	10,3	1,0	μg/L	10.0		103	70-130			
	9.89	1.0	μg/L	10.0		98.9	70-130			
3-Dichlorobenzene	9,88	1.0	μg/L	10.0		98.8	70-130			
,4-Dichlorobenzene	9.65	1.0	μg/L	10.0		96.5	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	DDD	RPD		
Batch B005880 - SW-846 5030B	rasan		Oillis	DOVE	Result	70KEC	Linus	RPD	Límit	Notes	
LCS (B005880-BS1)				Prepared & A	analyzed: 10	/07/09					
Dichlorodifluoromethane (Freon 12)	5.88	2.0	μg/L	10,0	maiyzeu. 10	58.8	40-160				
1,1-Dichloroethane	10.1	1.0	μg/L μg/L	10.0		101	70-130				†
1,2-Dichloroethane	9.87	1.0	μg/L μg/L	10.0		98.7	70-130				
1,1-Dichloroethylene	9.50	1.0	μg/L	10.0		95.0	70-130				
cis-1,2-Dichloroethylene	9.69	1.0	μg/L	10.0		96.9	70-130				
trans-1,2-Dichloroethylene	9.91	1.0	μg/L	10.0		99.1	70-130				
1,2-Dichloropropane	9.85	1.0	μg/L	10.0		98.5	70-130				
1,3-Dichloropropane	9.94	0.50	μg/L	10.0		99,4	70-130				
2,2-DichIoropropane	8.61	1.0	μg/L	10.0		86.1	40-130				
1,1-Dichloropropene	9.82	2.0	μg/L	10.0		98.2	70-130				†
cis-1,3-Dichloropropene	8,17	5.0	μg/L	10.0		81.7	70-130				
rans-1,3-Dichloropropene	8.42	0.50	μg/L	10.0		84.2	70-130				
Diethyl Ether	10.3	2.0	μg/L μg/L	10.0		103	70-130				
Disopropyl Ether (DIPE)	11.0	0.50	μg/L μg/L	10.0		110					
1,4-Dioxane	104	50	μg/L μg/L	10.0		104 .	70-130 40-130			****	_
Ethylbenzene	9.73	1.0	μg/L	10.0		97.3				V-16	†
Hexachlorobutadiene	10.4	1.0	μg/L	10.0		104	70-130 70-130			11.07	
-Hexanone (MBK)	112	10	μg/L μg/L	10.0		112				V-06	
sopropyIbenzene (Cumene)	10,8	1.0	μg/L	10.0		108	70-160 70-130			V-06	Ť
-Isopropyltoluene (p-Cymene)	9.78	1.0	μg/L μg/L	10.0		97.8					
4ethyl tert-Butyl Ether (MTBE)	11.5	1.0	μg/L . μg/L	10.0		115	70-130	•			
Aethylene Chloride	9,48	5.0	μg/L	10,0		94.8	70-130			11.06	
-Methyl-2-pentanone (MIBK)	114	10	μg/L	10.0	-		70-130			V-06	
Japhthalene	10.5	2.0	μg/L	10.0		105	70-160 40-130			V-06	†
-PropyIbenzene	9.72	1.0	ր <u>ա</u> ∠ μ <u>ա</u> /L	10.0		97,2	70-130			V-06	† '
ityrene	9.34	1.0	μg/L	10.0		93.4	70-130				
,1,1,2-Tetrachleroethane	8.01	1.0	μg/L	10.0		80.1	70-130 70-130				
,1,2,2-Tetrachloroethane	10.5	0.50	μg/L	10.0		105					
etrachloroethylene	9.52	1.0	μg/L	10.0			70-130				
etrahydrofuran	10.7	10	μg/L μg/L	10.0		95. 2 107	70-160				Ť
oluene	9.62	1.0	μ <u>φ</u> .∟ μ <u>φ</u> /L	10,0			70-130				
,2,3-Trichlorobenzene	8.87	5.0	μg/L μg/L	10.0		96.2 88.7	70-130 70-130				
,2,4-Trichlorobenzene	10,6	1.0	են∖Ր են∖Ր	10.0		88.7 106	70-130 70-130			37.07	
,l,l-Trichloroethane	8.67	1.0	μg/L μg/L	10.0		86.7	70-130 70-130			V-06	
,1,2-Trichloroethane	9,86	1.0	μg/L μg/L	10.0		98.6					
richloroethylene	9,65	1.0	μg/L μg/L	10.0		98.6 96.5	70-130				
richlorofluoromethane (Freon 11)	9,60	2.0	μg/L μg/L	10.0			70-130				
,2,3-Trichloropropane	9,44	2.0	μg/L μg/L	10.0		96.0 94.4	70-130 70-130				
,2,4-Trimethylbenzene	9,73	1.0	μg/L	10.0		94.4 97.3					
,3,5-Trirnethylbenzene	9.86	1.0	μg/L μg/L	10.0			70-130				
inyl Chloride	6.27	2.0	μg/L μg/L	10.0		98.6	70-130				J.
rtp Xylens	19.7	2.0	μg/L μg/L			62.7	40-160				†
-Xylene	10.3	1.0	μg/L μg/L	20,0 10,0		98,5 103	70-130 70-130				
urrogate; 1,2-Dichloroethane-d4	25.2	•	μg/L	25.0		101	70-130				-
urrogate: Toluene-d8	24.6		μ <u>υ</u> /L	25,0		98,6	70-130				
urrogate: 4-Bromofluorobenzene	25,1		μg/L	25.0		101	70-130				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B005880 - SW-846 5030B				· · · · · · · · · · · · · · · · · · ·							_
LCS Dup (B005880-BSD1)				Prepared &	Analyzed: 10	/07/09					_
Acetone	102	50	μg/L	100		102	70-160	4.41	25		1
tert-Amyl Methyl Ether (TAME)	10.4	0.50	μg/L	10.0		104	70-130	2.01	25		
Benzene	9.03	1,0	μg/L	10.0		90.3	70-130	6.12	25		
Bromobenzene	9.45	1.0	μg/L	10.0		94.5	70-130	0.422	25		
Bromochloromethane	11.3	1.0	μg/L	10,0		113	70-130	0.531	25		
Bromodichloromethane	7.23	1.0	μg/L	10.0		72.3	70-130	3.53	25		
Bromoform	7.71	5,0	μg/L	10.0		77.1	70-130	1.03	25		
Bromomethane	6.09	5.0	μg/L	10.0		60.9	40-160	5.92	25		Ť
2-Butanone (MEK)	103	20	μg/L	100		103	40-160	3.40	25		, †
n-Butylbenzene	8.73	1,0	μg/L	10.0		87,3	70-130	5.78	25		,
sec-Buty Ibenzene	9.09	1.0	μg/L	10.0		90.9	70-130	5.14	25		
tert-Buty1benzene	9.35	1.0	μg/L	10.0		93.5	70-130	6.12	25		
tert-Butyl Ethyl Ether (TBEE)	10.6	0,50	μg/L	10.0		106	70-130	1.68	25 25		
Carbon Disulfide	8.16	3.0	μg/L	10.0		81.6	70-130	8.23	25 25		
Carbon Tetrachloride	7.88	1.0	μg/L	10.0		78.8	70-130	7.92	25 25		
Chlorobenzene	9,35	1.0	μg/L	10.0		93.5	70-130				
Chlorodibromomethane	7.15	0.50	μg/L	10.0		71,5		3.47	25 25		
Chloroethane	8.73	2.0	μg/L	10.0			70-130	2.89	25		
Chloroform	9.96	2.0	μg/L μg/L			87.3 ;	70-130	4.59	25		
Chloromethane	6,62	2.0	μg/L	10.0		99.6	70-130	4,90	25		
2-Chlorotoluene	9.31	1.0		10.0		66.2	40-160	5.44	25		†
4-Chlorotoluene	9.61	1.0	μg/L	10.0		93.1	70-130	6.85	25		
1,2-Dibromo-3-chloropropane (DBCP)	8.10	5.0	μg/L	10.0		96.1	70-130	2,47	25		
1,2-Dibromoethane (EDB)	9.40	0,50	μg/L	10.0		81.0	70-130	. 1.37	25		
Dibromomethane	9.94	1,0	μg/L	10,0		94,0 :	70-130	5.38	25		
l,2-Dichlorobenzene	9.65		μg/L	10,0		99.4	70-130	3.27	25		
1,3-Dichlorobenzene	9.56	1.0 1.0	µg/L	10.0		96.5	70-130	2.46	25		
1,4-Dichlorobenzene	9.37		μg/L	10.0		95.6	70-130	3.29	25		
Dichlorodifluoromethane (Freon 12)	5.64	1.0	μg/L	10.0		93.7	70-130	2.94	25		
1,1-Dichloroethane	9.61	2.0	μg/L	10.0		56.4	40-160	4.17	25		†
1,2-Dichloroethane	10,0	1.0	μg/L "	10.0		96.1	70-130	4.87	25		
1,1-Dichloroethylene		1.0	μg/L	10.0		100	70-130	1.31	25		
zis-1,2-Dichloroethylene	8.85	1.0	μg/L	10.0		88.5	70-130	7.08	25		
rans-1,2-Dichloroethylene	9.37	1.0	μg/L	10.0		93,7	70-130	3,36	25		
1,2-Dichl cropropane	9.22	1.0	μg/L	10.0		92.2	70-130	7.21	25		
* 1	9.48	1.0	μg/L	10.0		94.8	70-130	3,83	25		
1,3-Dichloropropane	9.82	0.50	μg/L	10,0		98.2	70-130	1.21	25		
2,2-Dichl oropropane	7.98	1.0	μg/L	10.0		79.8	40-130	7.59	25		†
,1-Dichloropropene	9.31	2.0	μg/L	10.0		93.1	70-130	5.33	25		
ris-1,3-Dichloropropene	7.84	5.0	μg/L	10.0		78.4	70-130	4.12	25		
rans-1,3-Dichloropropene	7.93	0.50	μg/L	10.0		79.3	70-130	5.99	25		
Diethyl Ether	10.6	2.0	μg/L	10.0		106	70-130	2.30	25		
Diisopropyl Ether (DIPE)	10.9	0.50	μg/L	10.0		109	70-130	1.64	25		
,4-Dioxane	100	50	μg/L	100		100	40-130	4.14	50	V-16	†
thylbenzene	9.27	1.0	μg/L	10.0		92.7	70-130	4.84	25		
lexachlorobutadiene	9.89	1.0	μg/L	10.0		98.9	70-130	4.74	25	V-06	
-Hexanone (MBK)	107	10	μg/L	100		107	70-160	4.51	25	V-06	Ť
sopropylbenzene (Cumene)	10.3	1.0	μg/L	10.0		103	70-130	5.30	25	. •	,
-Isopropyltoluene (p-Cymene)	9.03	1.0	μg/L	10.0		90,3	70-130	7,97	25		
fethyl tert-Butyl Ether (MTBE)	11.6	1.0	μg/L	10,0		116	70-130	0.519	25		
Acthylene Chloride	8,91	5.0	μg/L	10.0		89.1	70-130	6.20	25	V-06	
-Methyl-2-pentanone (MIBK)	110	10	μg/L	100		110	70-160	3.78	25	V-06	†
laphthalene	9.77	2.0	μg/L	10.0		97.7	40-130	7.30	25	V-06	†

QUALITY CONTROL

9.21 9.25 8.01 10.4 9.20 10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 1.0 1.0 0.50 1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 2.0	Units Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/	Prepared & A 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	Result Analyzed: 10.	%REC /07/09 92.1 92.5 80.1 104 92.0 104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8 101 98.4 102	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	5.39 0.968 0.90 1.63 3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41 3.77	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
9.25 8.01 10.4 9.20 10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 1.0 0.50 1.0 1.0 1.0 5.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	Analyzed: 10	92.1 92.5 80.1 104 92.0 104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0.968 0.00 1.63 3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
9.25 8.01 10.4 9.20 10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 1.0 0.50 1.0 1.0 1.0 5.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		92.5 80.1 104 92.0 104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0.968 0.00 1.63 3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
8.01 10.4 9.20 10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 0.50 1.0 10 1.0 5.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		80.1 104 92.0 104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0.968 0.00 1.63 3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
10.4 9.20 10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	0.50 1.0 10 1.0 5.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		104 92.0 104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	0.00 1.63 3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
9.20 10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 10 1.0 5.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		92.0 104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-160 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	1.63 3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
10.4 9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	10 1.0 5.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L Hg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		104 91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	3.42 2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
9.16 8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6	1.0 5.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	2.09 4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
8.53 10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	5.0 1.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		91.6 85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130	4.90 3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
10.2 8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 1.0 1.0 1.0 2.0 2.0 1.0 1.0 2.0	HE/L HE/L HE/L HE/L HE/L HE/L HE/L HE/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		85.3 102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	3.91 4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25 25 2	V-06	
8.22 9.99 9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 225.3 24.6 25.5	1.0 1.0 1.0 2.0 2.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		102 82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	4.42 5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24	25 25 25 25 25 25 25 25 25 25 25 25 25	V-06	
9,99 9,03 9,04 8,98 9,43 9,38 5,95 18.8 9,88 25.3 24.6 25.5	1.0 1.0 2.0 2.0 1.0 1.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		82.2 99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	5.33 1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25 25 25		
9.03 9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 2.0 2.0 1.0 1.0 2.0	he/L he/L he/L he/L he/L he/L he/L he/L	10.0 10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		99.9 90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	1.31 6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25 25		
9.04 8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6	2.0 2.0 1.0 1.0 2.0 2.0	hg/L hg/L hg/L hg/L hg/L hg/L hg/L	10.0 10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0		90.3 90.4 89.8 94.3 93.8 59.5 94.2 98.8	70-130 70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	6.64 6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25 25 25		
8.98 9.43 9.38 5.95 18.8 9.88 25.3 24.6	2.0 1.0 1.0 2.0 2.0	h8/r h8/r h8/r h8/r h8/r h8/r	10.0 10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0	,	90.4 89.8 94.3 93.8 59.5 94.2 98.8 101 98.4	70-130 70-130 70-130 70-130 40-160 70-130 70-130 70-130	6.01 4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25 25		
9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 1.0 2.0 2.0	h8/r h8/r h8/r h8/r h8/r	10.0 10.0 10.0 10.0 20.0 10.0 25.0 25.0	,	89.8 94.3 93.8 59.5 94.2 98.8 101	70-130 70-130 70-130 40-160 70-130 70-130 70-130	4.99 3.13 4.99 5.24 4.41	25 25 25 25 25 25		
9.43 9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 1.0 2.0 2.0	hg/L hg/L hg/L hg/L	10.0 10.0 10.0 20.0 10.0 25.0 25.0		94.3 93.8 59.5 94.2 98.8 101 98.4	70-130 70-130 40-160 70-130 70-130 70-130	3.13 4.99 5.24 4.41	25 25 25 25		
9.38 5.95 18.8 9.88 25.3 24.6 25.5	1.0 2.0 2.0	րց/L րց/L րց/L րց/L րց/L	10.0 10.0 20.0 10.0 25.0 25.0		93.8 59.5 94.2 98.8 101 98.4	70-130 40-160 70-130 70-130 70-130	4.99 5.24 4.41	25 25 25		
5.95 18.8 9.88 25.3 24.6 25.5	2.0 2.0	րg/L րg/L րg/L րg/L	10.0 20.0 10.0 25.0 25.0		59.5 94.2 98.8 101 98.4	40-160 70-130 70-130 70-130 70-130	5.24 4.41	25 25		
18.8 9.88 25.3 24.6 25.5	2.0	μg/L μg/L μg/L μg/L	20.0 10.0 25.0 25.0		94.2 98.8 101 98.4	70-130 70-130 70-130 70-130	4.41	25		
9.88 25.3 24.6 25.5		μg/L μg/L μg/L	25.0 25.0		98.8 101 98.4	70-130 70-130 70-130				
25.3 24.6 25.5	was-	μg/L μg/L	25.0 25.0	***************************************	101 98.4	70-130 70-130			****	
24.6 25.5		$\mu g/L$	25.0		98.4	70-130	•			
25.5										
		μg/L	25.0		102	70-130				
ND			Prepared: 10/	/09/09 Analy	zed: 10/12/0) G	·			
	50	μg/L	11010000110		200. 10/12/0	-			*****	
ND	0.50	μg/L								
ND	1.0	μg/L								
ND	1.0	μg/L								
ND	1.0	μg/L								
ND	1.0	μg/L								
ND	5.0	μg/L								
ND	5,0	μg/L								
ND	20	μg/L								
ND	1,0	μg/L								
ND	1.0									
NII)		μg/L								
	ND ND 1.0 ND 1.0 ND 0.50 ND 3.0 ND 1.0 ND 0.50 ND 2.0 ND 2.0 ND 2.0 ND 1.0 ND 1.0 ND 1.0 ND 5.0 ND 0.50 ND 1.0	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 1.0 μg/L	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 5.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 5.0 μg/L ND 0.50 μg/L ND 0.50 μg/L	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 1.0 μg/L	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 5.0 μg/L ND 0.50 μg/L ND 0.50 μg/L	ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 3.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 2.0 μg/L ND 2.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 5.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L	ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 1.0 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L ND 0.50 μg/L	

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005943 - SW-846 5030B		<u>.</u>								:
Blank (B005943-BLK1)				Prepared: 10	/09/09 Anal	yzed: 10/12/	09			
1,4-Dichlorobenzene	ND	1,0	μg/L							
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L							
1,1-Dichloroethane	ND	1,0	μg/L							
1,2-Dichloroethane	ND	1.0	μg/L							
,1-Dichloroethylene	ND	1.0	μg/L		•					
cis-I,2-Dichloroethylene	ND	1.0	μg/L							
rans-1,2-Dichloroethylene	ND	1.0	μg/L							
,2-Dichloropropane	ND	1.0	μg/L							
,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
,1-Dichloropropene	ND	2,0	μg/L							
sis-1,3-Dichloropropene	ND	5.0	μg/L							
rans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	μg/L							
Diisopropyl Ether (DIPE)	ND	0.50	μg/L		-					
,4-Dioxane	ND	50	μg/L							V-16
thylbenzene	ND	1.0	μg/L							
lexachlorobutadiene	ND	1,0	μg/L							
-Hexanone (MBK)	ND	10	μg/L							
sopropyIbenzene (Cumene)	· ND	1.0	μg/L							
-lsopropyltoluene (p-Cymene)	ND	1.0	μg/L							
lethyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
lethylene Chloride	ND	5.0	μg/L							
Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahy drofuran	ND	10	μg/L							
oluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	1.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
ichloroethylene	ND	1.0	μg/L							
ichlorofluoromethane (Freon 11)	ND	2,0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trirnethylbenzene	ND	1.0	μg/Ł							
nyl Chloride	ND	2.0	μg/L							
p Xylene	ND	2.0	μg/L							
Xylene	ND	1.0	μg/L							
progate: 1,2-Dichloroethane-d4	26.2		μg/L	25.0		105	70-130			
urogate: Toluene-d8	24.6		μg/L μg/L	25.0		98.3	70-130			
arrogate: 4-Bromofluorobenzene	25,2		μg/L μg/L	25,0		90.5 101	70-130 70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B005943 - SW-846 5030B											i
LCS (B005943-BS1)				Prepared; 10)/09/09 Analy	zed: 10/12/	09				_
Acetone	123	50	μg/L	100		123	70-160				— †
tert-Amyl Methyl Ether (TAME)	11,7	0.50	μg/L	10.0		117	70-130				
Benzene	9,79	1.0	$\mu g/L$	10.0		97.9	70-130				
Вготовелие	9.35	1.0	μg/L	10.0		93.5	70-130				
Bromochloromethane	12.2	1.0	μg/L	10.0		122	70-130				
Bromodichloromethane	8,57	1.0	μg/L	10.0		85.7	70-130				
Bromoform	8,95	5.0	μg/L	10.0		89.5	70-130				
Bromomethane	5.13	5.0	μg/L	10.0		51.3	40-160			V-06	†
2-Butanone (MEK)	115	20	μg/L	100		115	40-160				†
n-Butylbenzene	8.89	1.0	μg/L	10.0		88.9	70-130				
sec-Butylbenzene	9.32	1.0	μg/L	10.0		93.2	70-130				
tert-Buty lbenzene	9,85	1.0	μg/L.	10.0		98.5	70-130				
tert-Butyl Ethyl Ether (TBEE)	11.7	0.50	μg/L	10.0		117	70-130				
Carbon Disulfide	9,89	3.0	μg/L	10.0		98.9	70-130				
Carbon Tetrachloride	10.0	1,0	μg/L	10.0		100	70-130				
Chlorobenzene	9.72	1.0	µg/L	10.0		97.2	70-130				
Chlorodibromomethane	8.37	0.50	μg/L	10.0		83.7	70~130				
Chloroethane	9.58	2.0	μg/L	10.0		95.8	70-130				
Chloroform	11.0	2.0	μg/L	10.0		110	70-130				
Chloromethane	6.35	2.0	μg/L	10.0		63.5	40-160				†
2-Chlorotoluene	9.77	1.0	μg/L	10.0		97.7	70-130				
4-Chlorotoluene	9.93	1.0	μg/L	10,0		99.3	70-130				
1,2-Dibromo-3-chloropropane (DBCP)	9.50	5.0	μg/L	10.0		95.0	70-130				
1,2-Dibromoethane (EDB)	10.3	0.50	μg/L	10.0		103	70-130				
Dibromomethane	10.4	1.0	μg/L	10.0		104	70-130				
1,2-Dichlorobenzene	9.54	1.0	μg/L	10.0		95,4	70-130				
1,3-Dichlorobenzene	9.47	1,0	μg/L	10.0		94.7	70-130				
I,4-Dichlorobenzene	9.28	1.0	μg/L	10.0		92.8	70-130				
Dichloro difluoromethane (Freon 12)	5,39	2.0	μg/L	10.0		53.9	40-160				†
1,1-Dichloroethane	10.7	1.0	μg/L	10.0		107	70-130				1
1,2-Dichloroethane	10.3	1.0	μ g /L	10.0		103	70-130				
1,1-Dichloroethylene	10.1	1.0	μg/L	10.0		101	70-130				
cis-1,2-Dichloroethylene	10.2	1.0	μg/L	10.0		102	70-130				
trans-1,2-Dichlomethylene	10.3	1.0	μg/L	10.0		103	70-130				
1,2-Dichloropropane	10.3	1.0	μg/L	10.0		103	70-130				
1,3-Dichloropropane	9,99	0.50	μg/L	10.0		99.9	70-130				
2,2-Dichloropropane	11.1	1,0	μg/L	10.0		111	40-130				
1,1-Dichloropropene	10.4	2.0	μg/L	10.0		104	70-130				Ť
cis-1,3-Dichloropropene	9.22	5.0	μg/L	10.0							
trans-1,3-Dichloropropene	9.73	0.50	μg/L			92.2	70-130				
Diethyl Ether	10,8	2.0		10.0		97.3	70-130				
Diisopropyl Ether (DIPE)	11.7		μg/L	10.0		108	70-130				
1,4-Dioxane		0.50	μg/L	10.0		117	70-130				
Ethylbenzene	138	50	μg/L	100		138 *	40-130			L-07, V-16	Ť
Hexachlorobutadiene	9.66	1.0	μ <u>α</u> /L	10,0		96.6	70-130				
2-Hexanone (MBK)	12.0	1.0	μg/L	10.0		120	70-130				
z-riexanone (MBK) Isopropylbenzene (Cumene)	119	10	μg/L	100		119	70-160				†
* **	11.0	1.0	μg/L	10.0		110	70-130				
o-Isopropyltoluene (p-Cymene)	9,36	1.0	μg/L	10.0		93.6	70-130				
Methyl tert-Butyl Ether (MTBE)	12.7	1.0	μg/L	10.0		127	70-130				
Methylene Chloride	9,39	5.0	μg/L	10.0		93.9	70-130				
4-Methyl-2-pentanone (MIBK)	117	10	μg/L	100		117	70-160				†
Naphthalene	11.5	2.0	μg/L	10.0		115	40-130				Ť

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	_
Batch B005943 - SW-846 5030B											
LCS (B005943-BS1)				Prepared: 10	/09/09 Analy	yzed: 10/12/0)9				
n-Propylbenzene	9.80	1.0	μg/L	10.0		98.0	70-130			*********	_
Styrene	9.13	1.0	μg/L	10.0		91.3	70-130				
1,1,1,2-Tetrachloroethane	8.92	1.0	μg/L	10.0		89.2	70-130				
1,1,2,2-Tetrachloroethane	10.3	0.50	μg/L	10.0		103	70-130				
Tetrachloroethylene	10.4	1.0	μg/L	10.0		104	70-160			•	
Tetrahydrofuran	11.4	10	μg/L	10.0		114	70-130				
Toluene	9.91	1.0	μg/L	10,0		99.1	70-130				
I,2,3-Trichlorobenzene	9.14	5,0	μg/L	10.0		91.4	70-130				
1,2,4-Trichlorobenzene 1,1,1-Trichloroethane	11.3	1.0	μg/L	10.0		113	70-130				
1,1,2-Trichloroethane	10.2	1.0	μg/L	10.0		102	70-130				
Trichloroethylene	10.4	1.0	μg/L	10.0		104	70-130				
Trichlorofluoromethane (Freon 11)	10.2 10.5	1.0 2.0	μg/L	10.0		102	70-130				
1,2,3-Trichloropropane	9.54	2.0	μg/L μg/L	10,0		105 -	70-130				
1,2,4-Trimethylbenzene	9.39	1,0	μg/L μg/L	10.0 10.0		95,4 93,9:	70-130 70-130				
1,3,5-Trimethylbenzene	9.84	1,0	μg/L μg/L	10.0		98.4	70-130				
Vinyl Chloride	6.32	2,0	μg/L μg/L	10.0		63.2	40-160				
m+p Xylene	19.6	2.0	μg/L	20.0		97.8	70-130				
o-Xylene	10,3	1.0	μg/L	10,0		103 -	70-130				
Surrogate: 1,2-Dichloroethane-d4	25.7										
Surrogate: Toluene-d8	24.6		μg/L μg/L	25.0 25.0		103	70-130 70-130				
Surrogate: 4-Bromofluorobenzene	26.3		μg/L μg/L	25.0		98.4 105	70-130				
•	20.0		MBID								
LCS Dup (B005943-BSD1) Acetone	100			Prepared: 10/	09/09 Analy						
ert-Amyl Methyl Ether (TAME)	127	50	µg/L	100		127	70-160	3,19	25		
Benzene	11,4 9.56	0.50	μg/L	10.0		114	70-130	3.20	25		
Bromobenzene	9.23	1.0 1.0	μg/L	10.0		95.6	70-130	2.38	25		
Bromochloromethane	11.8	1.0	μg/L μg/L	10.0 10.0		92.3	70-130	1.29	25		
Bromodichloromethane	8.54	1.0	μg/L μg/L	10.0		118 85.4	70-130 70-130	2.58	25		
Bromoform	8.88	5.0	μg/L	10.0		88.8	70-130	0,351 0,785	25 25		
Bromomethane	5,42	5.0	μg/L	10.0		54.2	40-160	5.50	25	V-06	
-Butanone (MEK)	116	20	μg/L	100		116	40-160	0.993	25	V-00	
-Butylbenzene	8.64	1.0	μg/L	10.0		86.4	70-130	2.85	25		
ec-Butylbenzene	9.29	1,0	μg/L	10,0		92,9	70-130	0.322	25		
ert-Butylbenzene	9.60	1.0	μg/L	10.0		96.0	70-130	2.57	25		
ert-Butyl Ethyl Ether (TBEE)	11.6	0.50	μg/L	10.0		116	70-130	1.29	25		
Carbon Disulfide	9.27	3.0	μg/L	10.0		92.7	70-130	6.47	25		
Carbon Tetrachloride	9.50	1.0	μg/L	10.0		95.0	70-130	5.33	25		
Chlorobenzene	9.36	1,0	μg/L	10,0		93,6	70-130	3.77	25		
Chlorodibromomethane	8.33	0.50	μg/L	10.0		83.3	70-130	0.479	25		
Chloroethane	9.27	2.0	μg/L	10,0		92.7	70-130	3.29	25		
hioroform	10.8	2.0	μg/L	10.0		108	70-130	1.37	25		
Chloromethane	6.18	2.0	μg/L	10.0		61.8	40-160	2.71	25		
-Chiorotoluene	9.73	1.0	μg/L	10,0		97.3	70-130	0,410	25		
-Chlorotoluene	9.79	1.0	μg/L	10,0		97,9	70-130	1.42	25		
,2-Dibromo-3-chloropropane (DBCP)	9,26	5.0	μg/L	10.0		92.6	70-130	2.56	25		
2-Dibromoethane (EDB)	10.3	0.50	μg/L	10.0		103	70-130	0.292	25		
ibromornethane	10.7	1.0	μg/L	10.0		107	70-130	2.76	25		
2-Dichl orobenzene	9.46	1.0	μg/L	10.0		94.6	70-130	0.842	25		
3-Dichl crobenzene 4-Dichl crobenzene	9.41	1.0	μg/L	10.0		94.1	70-130	0.636	25		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	-
Batch B005943 - SW-846 5030B											
LCS Dup (B005943-BSD1)				Prepared: 10)/09/09 Analy	yzed: 10/12/	09				
Dichlorodifluoromethane (Freon 12)	5.38	2.0	μg/L	10.0		53.8	40-160	0.186	25		_†
1,1-Dichloroethane	10.4	1.0	μg/L	10.0		104	70-130	3,03	25		'
1,2-Dichloroethane	10.2	1.0	μg/L	10.0		102	70-130	1.17	25		
I,l-Dichloroethylene	9.85	1.0	μg/L	10.0		98,5	70-130	2.41	25		
cis-1,2-Dichloroethylene	9.94	1.0	μg/L	10.0		99.4	70-130	2.88	25		
trans-1,2-Dichloroethylene	9.67	1.0	μg/L	10.0		96.7	70-130	5,92	25		
I,2-DichIoropropane	10.1	1,0	μg/L	10.0		101	70-130	2.45	25		
1,3-Dichloropropane	9.96	0.50	μg/L	10.0		99,6	70-130	0.301	25		
2,2-Dichloropropane	10.1	1.0	μg/L	10,0		101	40-130	9.70	25		
1,1-Dichloropropene	10.1	2.0	μg/L	10.0		101	70-130	2. 8 4	25 25		†
cis-1,3-Dichloropropene	9.07	5.0	μg/L	10.0		90.7	70-130	1.64	25		
trans-1,3-Dichloropropene	9.60	0,50	μg/L	10.0		96.0	70-130	1.35	25		
Diethyl Ether	10.8	2.0	μg/L	10.0		108	70-130	0.278			
Diisopropyl Ether (DIPE)	11.3	0.50	μg/L	10.0		113	70-130	3.57	25		
1,4-Dioxane	123	50	μg/L	100		123	40-130		25	** **	
Ethylbenzene	9.43	1.0	μg/L	10.0		94.3	70-130	11.6	50	V-16	†
Hexachlorobutadiene	10.6	1,0	μg/L	10.0		106		2.41	25		
2-Hexanone (MBK)	122	10	μg/L	100		122	70-130	12.8	25		
Isopropylbenzene (Cumene)	10,7	1.0	μg/L	10,0			70-160	2.59	25		†
p-lsopropyltoluene (p-Cymene)	9.12	1.0	μg/L	10.0		107	70-130	2.85	25		
Methyl tert-Butyl Ether (MTBE)	12.4	1.0	µg/L	10.0		91.2	70-130	2,60	25		
Methylene Chloride	9.07	5.0	μg/L	10.0		124	70-130	2.87	25		
1-Methyl-2-pentanoue (MIBK)	121	10	μg/L μg/L	10.0		90,7	70-130	3.47	25		
Naphthalene	10.1	2.0	μg/L	10.0		121	70-160	3.21	25		†
n-Propylbenzene	9.52	1.0	μg/L	10.0		101	40-130	13.0	25		Ť
Styrene	9.26	1.0	μg/L μg/L	10,0		95:2	70-130	2.90	25		
,1,1,2-Tetrachloroethane	8,73	1.0	μg/L μg/L			92.6	70-130	1.41	25		
,1,2,2-Tetrachloroethane	10.5	0.50	μg/L μg/L	10.0 10.0		87.3	70-130	2.15	25		
Tetrachloroethylene	10.1	1.0	μg/L			105	70-130	2.12	25		
etrahy drofuran	11.2	10	μg/L μg/L	10.0		101	70-160	2.54	25		Ť
oluene	9.64	1.0	μg/L μg/L	10.0		112	70-130	1.33	25		
,2,3-Trichlorobenzene	8.23	5.0		10.0		96,4	70-130	2.76	25		
,2,4-Trichlorobenzene	10.6	1.0	μg/L /l	10.0		82.3	70-130	10.5	25		
,1,1-Trichloroethane	9,63	1.0	μg/L	10.0		106	70-130	6.76	25		
,1,2-Trichloroethane	10.4	1.0	μg/L	10.0		96.3	70-130	5.55	25		
richloroethylene	9.85	1.0	μg/L ····/1	10.0		104	70-130	0.192	25		
richlorofluoromethane (Freon 11)	9,90		μg/L	10.0		98.5	70-130	3.00	25		
,2,3-Trichloropropane	9,53	2.0	μg/L	10.0		99.0	70-130	5.50	25		
,2,4-Trimethylbenzene	9.32	2.0	μg/L	10,0		95.3	70-130	0.105	25		
,3,5-Trimethylbenzene		1.0	μg/L	10.0		93,2	70-130	0.748	25		
Tinyl Chloride	9.77	1.0	μg/L	10.0		97.7	70-130	0.714	25		
atp Xylene	6.20	2.0	μg/L	10,0		62.0	40-160	1.92	25		†
-Xylene	19.4	2.0	μg/L	20.0		96.8	70-130	1,03	25		
·	10.2	1,0	μg/L	10.0		102	70-130	1.37	25		
urrogate: 1,2-Dichloroethane-d4	25.6		μg/L	25.0		102	70-130		· · · · · · · · · · · · · · · · · · ·		
urrogate: Toluene-d8	24.6		μg/L	25.0		98.5	70-130				
urrogate: 4-Bromofluorobenzene	25.9		μg/L	25,0		103	70-130				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Petroleum Hydrocarbons Analyses - EPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005843 - SW-846 3510C									-	
Blank (B005843-BLK1)				Prepared &	Analyzed: 10	/07/09				
C9-C18 Aliphatics	ND	150	μg/L							***************************************
C19-C36 Aliphatics	ND	150	μg/L							
Jnadjusted C11-C22 Aromatics	ND	100	$\mu g/L$							
C11-C22 Aromatics	ND	100	μg/L							
Acenaphthene	ND	2.0	μg/L							
cenaphthylene	ND	2.0	$\mu g/L$							
nthracene	ND	2.0	$\mu g/L$							
enzo(a)anthracene	ND	2.0	μg/L							
enzo(a)pyrene	ND	2.0	μg/L							
enzo(b)fluoranthene	ND	2.0	$\mu g/L$							
enzo(g,h,i)perylene	ND	2.0	μg/L							
enzo(k)fluoranthene	ND	2.0	μg/L							
hrysene	ND	2,0	μg/L							
bibenz(a,h)anthracene	ND	2.0	μg/L							
luoranthene	ND	2.0	μg/L							
luorene	ND	2.0	μg/L							
ideno(1,2,3-cd)pyrene	ND	2.0	μg/L							
Methylnaphthalene	ND	2.0	μg/L							
aphthalene	ND	2.0	μg/L							
nenanthrene	ND	2.0	μg/L							
yrene	ND	2.0	μg/L							
nrogate: Chloroctadecane (COD)	70.9	-	μg/L	100		70.9	40-140			
urogate: o-Terphenyl (OTP)	71.3		μg/L	100		71.3	40-140			
urogate: 2-Bromonaphthalene	93.1		μg/L	100		93.1	40-140			
rrogate: 2-Fluorobipheny!	97,7		μg/Ł	100		97.7	40-140			
CS (B005843-BS1)				Prepared & A	alyzed: 10/	07/09				
9-C18 Aliphatics	44.0	150	μg/L	600		73.3	40-140			•
19-C36 Aliphatics	798	150	μg/L	800		99.7	40-140			
nadjusted C11-C22 Aromatics	1500	100	μg/L	1700		88,3	40-140			
cenaphthene	71.8	2.0	μg/L	100		71.8	40-140			
cenaphthylene	75.8	2.0	μg/L	100		75.8	40-140			
nthracene	84.6	2,0	μg/L	100		84.6	40-140			
enzo(a)anthracene	87.9	2.0	μg/L	100		87.9	40-140			
enzo(a)pyrene	85.0	2.0	μg/L	100		85.0	40-140			
enzo(b)fluoranthene	89.6	2.0	μg/L	100		89.6	40-140			
enzo(g,h,i)perylene	85.6	2.0	μg/L	100		85.6	40-140			
enzo(k)fluoranthene	87.5	2.0	$\mu g/L$	100		87.5	40-140			
wysene	90.1	2.0	μg/L	100		90.1	40-140			
benz(a_h)anthracene	84.8	2.0	μg/L	100		84.8	40-140			
uoranthene	85.1	2.0	μg/L	100		85.1	40-140			
iorene	77.9	2.0	$\mu g/L$	100		77.9	40-140			
leno(1,2,3-cd)pyrene	83,6	2.0	μg/L	100		83.6	40-140			
Methylmaphthalene	71.8	2.0	μg/L	100		71.8	40-140			
phthalene	66.4	2.0	μg/L	100		66.4	40-140			
enanthrene	79,9	2.0	μg/L	100		79.9	40-140			
rene	88.4	2.0	μg/L	100		88.4	40-140			
Nonane	44.7	2.0	μg/L	100		44.7	30-140			
phthalene-aliphatic fraction	0.00		$\mu g/L$	100			0-5			
Methylmaphthalene-aliphatic fraction	0.00		μg/L	100			0-5			
rogate: Chloroctadecane (COD)	72.2		μg/L	100		72.2	40-140	***********		
rogate: o-Terphenyl (OTP)	86,4		μg/L	100		86.4	40-140			

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - EPH - Quality Control

Analyte		Reporting		Spike	Source		%REC		RPD		
	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch B005843 - SW-846 3510C										*****	
LCS (B005843-BS1)	Prepared & Analyzed: 10/07/09										
Surrogate: 2-Bromonaphthalene	108		μg/L	100		108	40-140		1911-111		
Surrogate: 2-Fluorobipheny1	115		μg/L	100		115	40-140				
LCS Dup (B005843-BSD1)	Prepared & Analyzed; 10/07/09										
C9-C18 Aliphatics	458	150	μg/L	600		76.4	40-140	4.10	25		
C19-C36 Aliphatics	803	150	μg/L	800		100	40-140	0.648	25		
Unadjusted C11-C22 Aromatics	1300	100	μg/L	1700		76.4	40-140	I4.5	25		
Acenaphthene	63.9	2.0	μg/L	100		63.9	40-140	13.7	25		
Acenaphthylene	67.6	2.0	μg/L	100		67.6	40-140	11.4	25		
Anthracene	74.2	2.0	μg/L	100		74.2	40-140	13.1	25		
Benzo(a)anthracene	75.1	2.0	μg/L	100		75.1	40-140	15.7	25		
Benzo(a)pyrene	72.5	2.0	μg/L	100		72.5	40-140	15.9	25		
Benzo(b)fluoranthene	76.4	2.0	μg/L	100		76.4	40-140	15.9	25		
Benzo(g,h,i)perylene	73.0	2.0	μg/L	100		73.0	40-140	16.0	25		
Benzo(k)fluoranthene	74.7	2.0	μg/L	100		74.7	40-140	15.9	25		
Chrysene	76.9	2.0	μg/L	100		76.9	40-140	15.8	25		
Dibenz(a,h)anthracene	72.4	2.0	μg/L	100		72.4	40-140	15.9	25		
luoranthene	73.5	2.0	μg/L	100		73.5	40-140	14.7	25		
luorene	69.0	2.0	μg/L	100		69.0	40-140	12.1	25		
ndeno(1,2,3-cd)pyrene	71.3	2.0	μg/L	100		71.3	40-140	15.9	25		
-Methylnaphthalene	64.1	2.0	μg/L	100		64.1	40-140	11.4	25		
Naphthalene	60.3	2.0	μg/L	100		60.3	40-140	9.54	25		
Phenanthrene	70.5	2.0	μg/L	100		70.5	40-140	12.4	25		
Pyrene	76.1	2.0	μg/L	100		76.1	40-140	15.0	25		
-Nonane	47.5	2.0	μg/L	100		47.5	30-140	6.05	25		
laphthalene-aliphatic fraction	0.00		μg/L	100			0-5				
-Methylnaphthalene-aliphatic fraction	0.00		μg/L	100			0-5				
Surrogate: Chlorooctadecane (COD)	72.5		μg/L	100		72.5	40-140				
Surrogate: o-Terphenyl (OTP)	74.2		μg/L	100		74.2	40-140				
urrogate: 2-Bromonaphthalene	93.0		μg/L	100		93.0	40-140				
Surrogate: 2-Fluorobiphenyl	98.7		μg/L	100		98.7	40-140				

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332 QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005829 - MA VPH										
Blank (B005829-BLK1)				Prepared &	Analyzed: 10	/07/09				
Jnadjusted C5-C8 Aliphatics	ND	100	μg/L							
C5-C8 Aliphatics	ND	100	μg/L							
Jnadjusted C9-C12 Aliphatics	ND	100	μg/L							
C9-C12 Aliphatics	ND	100	μg/L							
C9-C10 Aromatics	ND	100	μg/L							
Benzene	ND	1.0	μg/L							
Butylcyclohexane	ND	1.0	μg/L							
Decane	ND	1.0	μg/L							
thylbenzene	ND	1.0	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L 							
-Methylpentane	ND	1.0	μg/L							
laphthalene Ionane	ND	10	μg/L							
entane	ND	1.0	μg/L			,				
entane Coluene	ND ND	1,0	μg/L ····/							
,2,4-Trimethylbenzene	ND ND	1.0 1.0	μg/L							
,2,4-Trimemybenzene ,2,4-Trimethylpentane	ND ND	1.0	μg/L μα/ι							
t+p Xylene	ND ND	. 2.0	μg/L μg/L							
-Xylene	ND	1.0	нg/L µg/L			-				
итоgate: 2,5-Dibromotoluene (FID)	***************************************			40.0		110	#0 ***			
rrogate: 2,5-Dibromotoluene (PID)	45.3 37.5		μg/L μg/L	40.0 40.0		113- 93.6	70-130 70-130			
CS (B005829-BS1)				Prepared & A	anglyzed: 10/					
enzene	98.0	1.0	μg/L	100		98.0	70-130			
utylcyclohexane	102	1.0	μg/L	100		102	70-130			
ecane	127	1.0	μg/L	100		127	70-130			
hylbenzene	99.8	1.0	μg/L	100		99.8	70-130			
ethyl tert-Butyl Ether (MTBE)	104	1.0	μg/L	100		104	70-130			
Methylpentane	125	1.0	μg/L	100		125	70-130			
aphthalene	100	10	μg/L	100		100	70-130			
onane	101	1.0	μg/L	100		101	30-130			
entane	106	1.0	μg/L	100		106	70-130			
luene	97.6	1.0	μ g /L	100		97.6	70-130			
2,4-Trimethylbenzene	98.8	1.0	μg/L	100		98.8	70-130			
2,4-Trimethylpentane	122	1.0	μg/L	100		122	70-130			
+p Xylene	199	2.0	μg/L	200		99.5	70-130			
Xylene	98.0	1,0	μg/Ł	100		98,0	70-130			
urogate: 2,5-Dibromotoluene (FID)	47.7		μg/L	40.0		119	70-130			
rrogate: 2,5-Dibromotoluene (PID)	38.3		μg/L	40.0		95.8	70-130			
CS Dup (B005829-BSD1)		Prepared &								
enzene	101	1.0	μg/L	100		101	70-130	3.35	25	
ntylcyclohexane	95.9	1.0	μg/L	100		95.9	70-130	5.89	25	
cane	119	1.0	μg/L	100		119	70-130	6.46	25	
nylbenzene	95.6	1.0	μ <u>u</u> /L	100		95.6	70-130	4.29	25	
ethyl text-Butyl Ether (MTBE)	102	1.0	μg/L	100		102	70-130	1.60	25	
Methylpentane	116	1.0	μg/L	100		116	70-130	7.47	25	
phthalene	105	10	$\mu g/L$	100		105	70-130	4.92	25	
nane	95.0	1.0	μg/L	100		95.0	30-130	5.98	25	
ntane	105	1.0	μg/L	100		105	70-130	1.31	25	
luene	93.8	1.0	μg/L	100		93,8	70-130	3.89	25	
2,4-Trimethylbenzene	96.3	1,0	μg/L	100		96.3	70-130	2.58	2 5	

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limít	Notes
Batch B005829 - MA VPH										
LCS Dup (B005829-BSD1)				Prepared &	Analyzed: 10	/07/09				
2,2,4-Trimethylpentane	113	1,0	μg/L	100		113	70-130	7,23	25	
n+p Xylene	192	2.0	μg/L	200		95.9	70-130	3,63	25	
o-Xylene	96.9	1.0	μg/L	100		96.9	70-130	1.11	25	
Surrogate: 2,5-Dibromotoluene (FID)	47.4		μg/L	40.0		119	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	37.7		μg/L	40.0		94,4	70-130			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005862 - SW-846 3005A										****
Blank (B005862-BLK1)				Prepared: 10	0/07/09 Analy	yzed: 10/08/	09			
Arsenic	ND	2.0	μg/L							
Sarium	ND	250	μg/L							
admium	ND	2.5	μg/L							
hromium	ND	50	μg/L							
ead	ND	5.0	μg/L							
elenium	ND	25	$\mu g/L$							
lver	ND	2.5	μg/L							
CS (B005862-BS1)				Prepared: 10	/07/09 Analy	/zed; 10/08/0	09			
rsenic	507	4.0	μg/L	500		101	80-120			
arium	471	500	μg/L	500		94.2	80-120			
admium	479	5.0	μg/L	500		95.8	80-120			
hromium	483	100	μg/L	500		96.5	80-120			
ead	490	10	μ <u>α</u> /L	500		97,9	80-120			
elenium	458	50	μg/L	500		91.6	80-120			
lver	507	5,0	μg/L	500		101	80-120			
CS Dup (B005862-BSD1)				Prepared: 10/	/07/09 Analy	zed; 10/08/0	19			
senic	516	4.0	μg/L	500		103.	80-120	1.75	20	
rium	493	500	μg/L	500		98.6	80-120	4.59	20	
dmium	499	5.0	με/Լ	500		99,8	80-120	4.07	20	
romium	517	100	μg/L	500		103	80-120	6.91	20	
ad	503	10	μg/L	500		101	80-120	2.71	20	
lenium	477	50	μg/L	500		95.4	80-120	4.15	20	
ver	531	5.0	μg/L	500		106	80-120	4.62	20	
plicate (B005862-DUP1)	Sour	ce: 09J0115-0	2	Prepared: 10/	07/09 Anal y	zed: 10/08/0	9	•		
senic	ND	2.0	μg/L		ND			NC	20	
rium	ND	250	μg/Լ		ND			NC	20	
dmium	ND	2.5	μg/L		ND			NC	20	
romium	ND	50	μg/L		ND			NC	20	
ad	ND	5,0	μg/L		ND			NC	20	
enium	ND	25	μg/Ł		ND			NC	20	
ver	ND	2.5	μg/L		ND			NC	20	
atrix Spike (B005862-MS1)	Sour	ce: 09J0115-0	2	Prepared; 10/0	07/09 Analy:	zed: 10/08/0	9			
senic	513	4.0	μg/L	500	ND	103	75-125			
rium	646	500	μg/L	500	178	93.6	75-125			
dmium	482	5.0	μg/L	500	0.163	96.3	75-125			
romium	482	100	μg/L	500	ND	96.5	75-125			
ad	483	10	μg/L	500	ND	96.6	75-125 75-125			
enium	472	50	րց/L	500	ND	94.5	75-125 75-125			
ver	482	5.0	μg/L μg/L	500	ND ND	94.3 96.4	75-125 75-125			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B005873 - SW-846 7470A Prep			,				····	*****	•	***************************************
Blank (B005873-BLK1)				Prepared: 10	/07/09 Analy	yzed; 10/08/	19			
Mercury	ND	0.00010	mg/L			<u> </u>				•
LCS (B005873-BS1)				Prepared: 10	/07/09 Analy	yzed: 10/08/)9			
Mercury	0.00205	0,00010	mg/L	0.00200		103	80-120			
LCS Dup (B005873-BSD1)				Prepared: 10	/07/ 09 Analy	yzed: 10/08/0)9			
Mercury	0.00200	0.00010	mg/L	0,00200	••••	100	80-120	2.55	20	
Duplicate (B005873-DUP1)	Sour	rce: 09J0115-()6	Prepared; 10	/07/09 Analy	yzed: 10/08/0)9			
Mercury	ND	0.00010	mg/L		ND			NC	20	
Matrix Spike (B005873-MS1)	Sou	rce: 09J0115-0)6	Prepared: 10/07/09 Analyzed: 10/08/09						
Mercury	0.00195	0.00010	mg/L	0.00200	ND	97.3	75-125			

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits estabished for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound.
-16	Significant uncertainty is associated with the reported value which is likely to be biased on the high side. Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
MADEP-EPH-04-1.1 in Water	
C9-C18 Aliphatics	CT,NC,WA
C19-C36 Aliphatics	CT,NC,WA
Unadjusted C11-C22 Aromatics	CT,NC,WA
C11-C22 Aromatics	CT,NC,WA
Acenaphthene	CT,NC,WA
Acenaphthylene	CT,NC,WA
Anthracene	CT,NC,WA
Benzo(a)anthracene	CT,NC,WA
Benzo(a)pyrene	CT,NC,WA
Benzo(b)fluoranthene	CT,NC,WA
Benzo(g,h,i)perylene	CT,NC,WA
Benzo(k)fluoranthene	CT,NC,WA
Chrysene	CT,NC,WA
Dibenz(a,h)anthracene	CT,NC,WA
Fluoranthene	CT,NC,WA
Fluorene	CT,NC,WA
Indeno(1,2,3-cd)pyrene	CT,NC,WA
2-Methylnaphthalene	CT,NC,WA
Naphthalene	CT,NC,WA
Phenanthrene	CT,NC,WA
Pyrene	CT,NC,WA
MADEP-VPH-04-1.1 in Water	
Unadjusted C5-C8 Aliphatics	CT,NC,WA
C5-C8 Aliphatics	CT,NC,WA
Unadjusted C9-C12 Aliphatics	CT,NC,WA
C9-C1 2 Aliphatics	CT,NC,WA
C9-C1 0 Aromatics	CT,NC,WA
Benzene	CT,NC,WA
Ethylbenzene	CT,NC,WA
Methyl tert-Butyl Ether (MTBE)	CT,NC,WA
Naphthalene	CT,NC,WA
Toluene	CT,NC,WA
o-Xylene	CT,NC,WA
SW-846 6020A in Water	
Arsenic	CT,NH,NY,RI
Barium	CT,NH,NY,RI
Cadmi um	CT,NH,NY,RI
Chromium	CT,NH,NY,R1
Lead	CT,NH,NY,R1
Selenium	CT,NH,NY,R1
Silver	CT,NH,NY,RI
SW-846 7470A in Water	
Mercury	CT,NH,NY,RI
SW-846 8260B in Water	- wyw.maga.com
Acetome	CT,NH,NY

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260B in Water	
tert-Amyl Methyl Ether (TAME)	NH,NY
Benzene	CT,NH,NY,RI
Bromochloromethane	NH,NY
Bromodichloromethane	CT,NH,NY,RI
Bromoform	CT,NH,NY,RI
Втототенапе	CT,NH,NY,RI
2-Butanone (MEK)	CT,NH,NY
n-Butylbenzene	NY
sec-Butylbenzene	NY
tert-Butylbenzene	NY
tert-Butyl Ethyl Ether (TBEE)	NH,NY
Carbon Disulfide	CT,NH,NY
Carbon Tetrachloride	CT,NH,NY,RI
Chlorobenzene	CT,NH,NY,RI
Chlorodibromomethane	CT,NH,NY,RI
Chloroethane	CT,NH,NY,RI
Chloroform	CT,NH,NY,RI
Chloromethane	CT,NH,NY,RI
Dibromomethane	NH,NY
I,2-Dichlorobenzene	CT,NY,RI
1,3-Dichlorobenzene	CT,NH,NY,RI
I,4-Dichlorobenzene	CT,NH,NY,Ri
Dichlorodifluoromethane (Freon 12)	NH,NY,RI
1,1-Dichloroethane	CT,NH,NY,RI
1,2-Dîchloroethane	CT,NH,NY,RI
1,1-Dichloroethylene	CT,NH,NY,RI
trans-1,2-Dichloroethylene	CT,NH,NY,RI
1,2-Dichleropropane	CT,NH,NY,RI
2,2-Dichloropropane	NH,NY
1,1-Dichloropropene	NH,NY
cis-1,3-Dichloropropene	CT,NH,NY,RI
traus-1,3-Dichloropropene	CT,NH,NY,RI
Düsepropyl Ether (DIPE)	NH,NY
Ethylbenzene	CT,NH,NY,R1
Hexachlorobutadiene	CT,NH,NY
2-Hexanone (MBK)	CT,NH,NY
Isopropylbenzene (Cumene)	NY
p-lsopropyltoluene (p-Cymene)	CT,NH,NY
Methy I tert-Butyl Ether (MTBE)	CT,NH,NY
Methy lene Chloride	CT,NH,NY,RI
4-Methyl-2-pentamone (MIBK)	CT,NH,NY
Naphthalene	NH,NY
n-Propylbenzene	CT,NH,NY
Styrene	CT,NH,NY
1,1,1,2-Tetrachloroethane	C1,NH,NY
1,1,2,2-Tetrachloroethane	CT,NH,NY,RI
Tetrachloroethylene	CT,NH,NY,R1

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260B in Water		
Toluene	CT,NH,NY,RI	
1,2,3-Trichlorobenzene	NH,NY	
1,2,4-Trichlorobenzene	CT,NH,NY	
1,1,I-Trichloroethane	CT,NH,NY,RI	
1,1,2-Trichloroethane	CT,NH,NY,R1	
Trichloroethylene	CT,NH,NY,RI	
Trichlorofluoromethane (Freon 11)	CT,NH,NY,RI	
1,2,3-Trichloropropane	NH,NY	
1,2,4-Trimethylbenzene	NY	
1,3,5-Trimethylbenzene	NY	
Vinyl Chloride	CT,NH,NY,R1	
m+p Xylene	CT,NH,NY,Ri	
o-Xylene	CT,NH,NY,RI	
The CONTINUE I		

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2010
MA	Massachusetts DEP	M-MA100	06/30/2010
CT	Connecticut Department of Publile Health	PH-0567	09/30/2009
NΥ	New York State Department of Health	10899 NELAP	04/1/2010
ΝH	New Hampshire Environmental Lab	2516 NELAP	02/5/2010
રા	Rhode Island Department of Health	LAO00112	12/30/2009
VC	North Carolina Div. of Water Quality	652	12/31/2009
11	New Jersey DEP	MA007 NELAP	06/30/2010
L	Florida Department of Health	E871027 NELAP	06/30/2010
T T	Vermont Department of Health Lead Laboratory	LL015036	07/30/2010
VA	State of Washington Department of Ecology	C2065	03/23/2010

ÌΘ

ঠ

Page |

9 L

COD-RESK® ANALYTICAL LABORATORY

CHAIN OF CUSTODY RECORD SHOUSE

Email: info@contestlabs.com

Phone: 413-525-2332 Fax: 413-525-6405 www.contestlabs.com

EAST LONGMEADOW, MA 01028 39 SPRUCE ST, 2ND FLOOR

of contaillers **Preservation Comments -Cont.Code -tedlar trac Client Please use the following codes to let Con-Test know if a specific sample may ANALYSIS REQUESTED be high in concentration in Matrix/Conc. Code Box; 0928 5 2/2/9/1/ H21271 4 N. 7 Hd3 9 "Matrix | Conc. Email: Thougash @ charing Com DATA DELIVERY (check one): DFAX ZIEMAIL JOWEBSITE CLIENT Telephone:(413) 光络 427.2 9 Grab A POF Client PO # 76 - 22 - 0 M Comp osite mo-22 - 9K D OTHER Start Stop Date/Time Date/Time <u>の</u> で 三 22 Date Sampled -25× アンドン 5 H 333 Format: D EXCEL Project # 公伦心/milFax # 二 State Form Required? dyes □ no Ame Many 174 The 506 85 XIS ϵ 90 00 3 0 8 6 Lab# SOE O V. HOM BON Proposal Provided? (For Billing purposes) proposal date UCT DUTY Sister. Field ID Sample Description いなったとはし ŧ CM - 36 言じ、公の 2 - 10 いる。 70000 たいかなど CM-17 CM, 39 aboratory Comments: Project Location: ____Sampled By: Company Name: Attention:) | | Address:

H · High; M · Medium; L · Low; C · Clean; U · Unknown

0	8

Contact

Phone: 413-525-2332 Fax: 413-525-6405

CHAIN OF CUSTODY RECORD

39 SPRUCE ST, 2ND FLOOR

Preservation Page Z of 5 # of contallen Comments -Cont.Code T = Na thiosulfate Cont Cat X = Na hydroxide -adma-Cilen "Preservation Codes: Please use the following codes to let Con-Test know if a specific sample may M = Methanol EAST LONGMEADOW, MA 01028 ANALYSIS REQUESTED peol = TOH "I H. High; M. Medium; L. Low; C. Olean; U. Unknown DW= drinking water be high in concentration in Matrix/Conc. Code Box: GW= groundwater WW= wastewater *Matrix Code; \$ 700 -> Q 21297 - Z) Data Enhancement Project/RCP? CON HM **Detection Limit Requirements "Matrix | Conc. Code O GIS KEY Regulations? | MCP MENAIL DOWEBSITE CLIENT Telephone:(43) 74% (573 7 Code Email: Loweson Compared on the ٠. ンミのからの Grab DATA DELIVERY (check one): Olient PO # 76 - 22 - 04 Project # 12 - 22 - 24 PDP F osite Comp Date/Time | Date/Time O OTHER Date Sampled 252 Turnaround ** O EXCEL DICK IN TANK 10-Day Other 7-Day □FAX Format: оĝ Fax#: Email: Info@contestlabs.com Start www.contestlabs.com State Form Required? Date/Jime/ 0 Øyes □ no Date/Time: Lo)へいい Ö 0 Lab# Proposal Provided? (For Billing purposes) proposal date Field ID Sample Description 15 56.12 E Oxisting (elinguishad by: (signature) Relinquished by: (signature) C.S-W) Received by (signature) aboratory Comments: Company Name; Project Location: Sampled By: 😢 Attention: ☐ yes Address;

** TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS

NCORRECT, THRNAROINN TIME WHI NOT STABTHAR ALL ALTERIORS AND CLASSIFIED

B = Sodium bisulfate

S = Sulfurio Acld N = Nitric Acid

> S = soll/solid SL = sludge

Special Requirements or DL's:

D *24-Hr □ *48-Hr □ *72-Hr □ *4-Day

Date/Time:

Received by: (signature)

Date/Time:

A = air

www.contestlabs.com

Sample Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

CLIENT NAME:		RECEIVED BY: DA	TE: 10/5/09
1) Was the chain(s) of custody 2) Does the chain agree with the lift not, explain: 3) Are all the samples in good.	he samples?	igned? Yes No	
If not, explain:		•	
4) How were the samples rece	ived:		/
On Ice Direct from	Sampling [Ambient In Cooler(s)	,
Were the samples received in	Temperature Compli	ance of (2-6°C)? (Yes) No	
Temperature °C by Temp blank	6.0	Temperature °C by Temp gun	
5) Are there Dissolved samples	for the lab to filter?	Yes No	
Who was notified	Date	Time	
6) Are there any samples "On H	lold"?	Yes (No) Store	ed where:
7) Are there any RUSH or SHOR	RT HOLDING TIME sa	amples? Yes No	
Who was notified	Date	Time	
8) Location where samples are	stored: / _V	Permission to subcontract	samples? Yes No
		(Walk-in clients only) if not	already approved
At a significant the significant is grant to be a significant to be a significant to the		Client Signature:	
	?optoinara a		网络和热热等4.5 000000000000000000000000000000000000
	somamers se	ent in to Con-Test	. [
	# of containers		# of containers
1 Liter Amber	# of containers	8 oz claar jar	# of containers
1 Liter Amber 500 mL Amber		8 oz clear jar	# of containers
500 mL Amber		4 oz clear jar	# of containers
		4 oz clear jar 2 oz clear jar	# of containers
500 mL Amber 250 mL Amber (8oz amber)		4 oz clear jar 2 oz clear jar Other glass jar	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic		4 oz clear jar 2 oz clear jar	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic	0	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic	10	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below	10	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle	10	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves Tubes	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle	10	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle	10 40	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans Regulators	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore	10 40	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans Regulators Other	# of containers
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore aboratory Comments:	IO HO HO # Methanol	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans Regulators Other	
500 mL Amber 250 mL Amber (8oz amber) 1 Liter Plastic 500 mL Plastic 250 mL plastic 40 mL Vial - type listed below Colisure / bacteria bottle Dissolved Oxygen bottle Flashpoint bottle Encore	# Methanol	4 oz clear jar 2 oz clear jar Other glass jar Plastic Bag / Ziploc Air Cassette Brass Sleeves Tubes Summa Cans Regulators Other	

		MADEP MCF	Analytical Method	d Report Certific	cation Form			
Labo	oratory Name: C	on-Test Analytical	Laboratory		Project #: 09J	0115		
Proj	ect Location: C	rane Manufacturing	ı, Springfield, MA		MADEP RTN11	·		
This	Form provides certif	ications for the follo	owing data set: [list L	aboratory Samp	le ID Number(s)]			
09J	0115-01 thru 09J01	15-10						
Sam	ple Matrices: Wa	ater				· · · · · · · · · · · · · · · · · · ·		
MCP SW-846 8260B (X) 8151A () 8330				8330 ()	6010B()	7470A/1/	A (X)	
	thods Used	8270C()	8081A ()	VPH (X)	6020 (X)	9014M²	()	
	pecified in MADEP	8082 ()	8021B ()	EPH (X)	7000 S³()	7196A	()	
Anal	mpendium of alytical Methods. 1 List Release Tracking Number (RTN), if known 2 M SW-846 Method 9014 or MADEP Physiologically Available Cyanide (PAC) Method 3 S SW-846 Methods 7000 Series List individual method and analyte							
An	affirmative respons	se to questions A,	B, C and D is requi	red for "Presum	ptive Certainty" s	tatus		
Α	A Were all samples received by the laboratory in a condition consistent with that described on the Chain-of-Custody documentation for the data set?							
В	B Were all QA/QC procedures required for the specified analytical method(s) included in this report followed, including the requirement to note and discuss in a narrative QC data that did not meet appropriate performance standards or guidelines?							
C	"Presumptive Certa MADEP document	ainty", as described	neet all the analytica lin Section 2.0 (a), (ly Assurance and Qu nalytical Data?	b), (c) and (d) of	the	☑ Yes	□No¹	
D	VPH and EPH Met significant modifica	thods only: Was the	e VPH or EPH Meth 11.3 of respective M	od conducted wi	thout	☑ Yes	□No¹	
	A response to q	uestions E and F b	pelow is required fo	r "Presumptive	Certainty" status			
E Were all analytical QC performance standards and recommendations for the specified methods achieved?						□Yes	☑No¹	
F	Were results for all reported?	l analyte-list compo	unds/elements for th	ne specified meth	nod(s)	☐Yes	☑No¹	
¹All	Negative responses	s must be addresse	d in an attached En	vironmental Lab	oratory case narrat	ive.		
l, th inqu	e undersigned, atte uiry of those respo	est under the pains nsible for obtainin	s and penalties of p g the information, a nd belief, accurate	perjury that, bas the material con	ed upon my perso	onal		
Sig	nature:	Q. E	2-7-	Position:	Laboratory Manager			
Prii	nted Name: [Daren J. Damborag	ian	Date:	10/13/09			

Gilson Aspec XL4 Fractionation Check

Silica Gel Lot:	S212-47	Vendor:	PHENOMENEX
Frac Check Lot:	080709 PJG	Amount of DCM Collected:	5000 μL
Hexane Lot:	49148	Amount of Hexane Collected:	1800 μL
DCM Lot:	CZ816	-	
Acetone Lot:	49131	Data File: 08	80709 D0807095/D0807096

Compound	Conc. (ppm)	Rec.	<u>% Rec.</u>	<u>Limits</u>	
Naphthalene	50	38.516	77%	40-140	
2-Methylnaphthalene	50	41.010	82%	40-140	
Acenaphthalene	50	42.372	85%	40-140	
Acenaphthene	50	40.054	80%	40-140	
Fluorene	50	43.400	87%	40-140	
Phenanthrene	50	43.968	88%	40-140	
Anthracene	50	45.965	92%	40-140	
o-Terphenyl (surr.)	50	44.983	90%	40-140	
Fluoranthene	50	44.382	89%	40-140	
Pyrene	50	45.899	92%	40-140	
Benzo(a)anthracene	50	44.878	90%	40-140	
Chrysene	50	45.870	92%	40-140	
Benzo(b)fluoranthene	50	45.651	91%	40-140	
Benzo(k)fluoranthene	50	44.473	89%	40-140	
Benzo(a)pyrene	50	43.179	86%	40-140	
indeno(123cd)pyrene	50	41.860	84%	40-140	
Dibenzo(ah)anthracene	50	42.453	85%	40-140	
Benzo(ghi)perylene	50	42.789	86%	40-140	
C9	50	36.825	74%	30-140	
C10	50	39,031	78%	40-140	
C12	50	39.059	78%	40-140	
C14	50	44.203	88%	40-140	
C16	50	47.338	95%	40-140	
C18	50	47.748	95%	40-140	
C19	50	48.786	98%	40-140	
C20	50	47.942	96%	40-140	
1-Chloro-octadecane (surr.)	50	37.263	75%	40-140	
C22	50	48.025	96%	40-140	
C24	50	47.244	94%	40-140	
C26	50	48.141	96%	40-140	
C28	50	46.216	92%	40-140	
C30	50	45.661	91%	40-140	
C36	50	46.369	93%	40-140	
Fractionation Surrogates		6.300			
2-Fluorobiphenyl	50	44.388	89%	40-140	
2-Bromoпаphthalene	50	42.799	86%	40-140	
Aliphatic bleed thru			% (<	5%)	
Naphthalene	0		0.000		
2-Methylnaphthalene	0		0.0	00	

-	•	-
	•	
	•	
	6	
	•	
	·	
	· ·	
	•	

October 13, 2009

Brin Thompson OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103

Project Location: Crane Manufacturing

Client Job Number:

Project Number: 76-22-04

Laboratory Work Order Number: 09J0123

Enclosed are results of analyses for samples received by the laboratory on October 6, 2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Susan M. Burney Project Manager

OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103 ATTN: Brin Thompson

REPORT DATE: 10/13/2009

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 76-22-04

ANALYTICAL SUMMARY

WORK ORDER NUMBER:

09J0123

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION:

Crane Manufacturing

FIELD SAMPLE#	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
CM-41	09J0123-01	Ground Water		MADEP-EPH-04-1.	I
				MADEP-VPH-04-1	.1
				SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	
CM-25	09J0123-02	Ground Water		MADEP-EPH-04-1.	1
				MADEP-VPH-04-1	.1
				SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	
CM-22	09J0123-03	Ground Water		MADEP-EPH-04-1,	1
				MADEP-VPH-04-1	1
				SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	
CM-38	09J0123-04	Ground Water		MADEP-EPH-04-1.	1 .
			•	MADEP-VPH-04-1.	1
	4			SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	
Existing-4	09J0123-05	Ground Water		MADEP-EPH-04-1.	I
				MADEP-VPH-04-1.	1
				SW-846 6020A	
				SW-846 7470A	
				SW-846 8260B	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 6020A

Qualifications:

Elevated method detection limit due to high concentration of an interfering analyte(s).

Analyte & Samples(s) Qualified:

Arsenic, Chromium, Selenium 09J0123-03[CM-22]

SW-846 8260B

Qualifications:

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

1,4-Dioxane, Acetone, Hexachlorobutadiene, Methylene Chloride, Naphthalene

B005943-BS1, B005844-BSD1, B005844-BS1

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene, Hexachlorobutadiene, Naphthalene

09J0123-02[CM-25], B005844-BLK1, B005844-BSD1

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Significant uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

1,2,4-Trichlorobenzene, 2-Hexanone (MBK), 4-Methyl-2-pentanone (MIBK), Bromomethane, Hexachlorobutadiene, Methylene Chloride, Naphthalene B005880-BS1, B005884-BS1, B005844-BS1, B005844-BSD1, B005843-BS1, B005943-BSD1, 09J0123-04[CM-38]

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane

09J0123-01[CM-41], 09J0123-02[CM-25], 09J0123-03[CM-22], 09J0123-04[CM-38], 09J0123-05[Existing-4], B005844-BLK1, B005844-BSD1, B005880-BLK1, B005880-BSD1, B005943-BLK1, B005943-BSD1, B005943-BLK1, B005943-BSD1

otherwise listed in this narrative. Difficult analyte: 1,4-dioxane

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

MADEP-EPH-04-1.1

SPE cartridge contamination with non-petroleum compounds, if present, is verified by GC/MS in each method blank per extraction batch and excluded from C11-C22 aromatic range fraction in all samples in the batch. No significant modifications were made to the method.

MADEP-VPH-04-1,1

No significant modifications were made to the method. All VPH samples were received preserved properly at pH <2 in the proper containers as specified on the chain-of-custody form unless specified in this narrative.

SW-846 8260B

Laboratory control sample recoveries for required MCP Data Enhancement 8260 compounds were all within limits specified by the method except for "difficult analytes" where recovery control limits somewhere between 40-160% are used and/or unless otherwise listed in this narrative. Difficult analytes: MIBK, MEK, acetone, 1,4-dioxane, vinyl chloride, chloromethane, dichlorodifluoromethane, 2-hexanone, naphthalene, bromomethane, 2,2-dichloropropane and tetrachloroethylene

Duplicate laboratory fortified blank RPDs were all within control limits specified by the method except for "difficult analytes" where RPDs of 50% are used and/or unless

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Daren J. Damboragian Laboratory Manager

Project Location: Crane Manufacturing

Sample Description:

Date Received: 10/6/2009

Sampled: 10/6/2009 09:46

Field Sample #: CM-41
Sample ID: 09J0123-01
Sample Matrix: Ground Water

		,	Volatile Organic Co	ompounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1	**	SW-846 8260B	10/7/09	10/7/09 22:42	MFF
tert-Arnyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Benzene	ND	1.0	րց/Լ	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Bromobenzene	ND	1.0	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Bromochloromethane	ND	1.0	μ g/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Bromodichloromethane	1.3	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Bromomethane	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
2-Butanone (MEK)	ND	20	μg/L	l		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
n-Butylbenzene	NĐ	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Chloroform	5.7	2.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	. 10/7/09	10/7/09 22:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09		MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
l,4-Dichlorobenzene	ND	1.0	μ <u>g</u> /L	1		SW-846 8260B		10/7/09 22;42	MFF
Dichloredifluoromethane (Freen 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
I,1-Dichloroethane	ND	1.0	μg/L	1			10/7/09	10/7/09 22:42	MFF
1,2-Dichloroethane	ND	1.0	μg/L μg/L	1	1	SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,1-Dichloroethylene	ND	1.0		1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L /			SW-846 8260B	10/7/09	10/7/09 22:42	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2-Dichloropropane	ND		μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,3-Dichloropropane		1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
2,2-Dichloropropane	ND	0.50	μg/L 	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,1-Dichloropropene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
sis-1,3-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
• •	ND	5.0	μg/L	J		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
rans-1,3-Dichleropropene	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Diethyl Ether	ND	2.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Discopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
,4-Dioxane	ND	50	μg/L	1	V16	SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Ethylbenzene	ND	1.0	μg/l	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF

Work Order: 09J0123

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-41

Sampled: 10/6/2009 09:46

Sample ID: 09J0123-01

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

		·	oratile Organic Com	pounds by G	C/NIS				
Analyte	ъ. и	n.					Date	Date/Time	
Hexachlorobutadiene	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
2-Hexanone (MBK)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
` '	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
p-isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Naphthalene	ND	2.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
i,i,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Tolucne	ND	1.0	μg/L	ı		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2,4-Trichlorobenzene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Trichloroethylene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22;42	MFF
I,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Vinyl Chloride	ND	2.0	μ g/ L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 22:42	MFF
Surrogates	·····	% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		103	70-130					10/7/09 22:42	
Toluene-d8		98.7	70-130					10/7/09 22:42	
4-Bromofluorobenzene		98.9	70-130					10/7/09 22:42	

Surrogates	% Recovery	Recovery Limits	Flag	
TA BY II	· · · · · · · · · · · · · · · · · · ·	zecovery Elimits	riag	
1,2-Dichloroethane-d4	103	70-130		10/7/09 22:42
Toluene-d8	98.7	70-130		
	76.7	/0-130		10/7/09 22:42
4-Bromofluorobenzene	98.9	70-130		10/7/09 22:42

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009

Field Sample #: CM-41

Sampled: 10/6/2009 09:46

Sample 1D: 09J0123-01

•		Pe	troleum Hydrocarb	ons Analyses -	ЕРН			, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	
Analyte	Results	D.	** *.				Date	Date/Time	
C9-C18 Aliphatics		RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
•	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Unadjusted C11-C22 Aromatics	100	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	СЈМ
C11-C22 Aromatics	100	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	СЈМ
Anthracene	ND	2.0	μ g/ L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	СЈМ
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:29	СЈМ
Вепхо(а)рутепе	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	СЈМ
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:29	CJM
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:29	CJM -
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM ·
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	I		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:29	CJM
2-Methylnaphthalene	ND	2,0	μg/L	1		MADEP-EPH-04-1, I	10/7/09	10/8/09 18:29	CJM
Naphthalene	ND	2,0	μg/L	1		MADEP-EPH-04-1_1	10/7/09	10/8/09 18:29	CJM
Phenanthrene	ND	2.0	μg/L	į		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:29	CJM :
Pyrene	ND	2.0	μg/L.	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:29	CJM
Surrogates		% Recovery	Recovery Limits		Flag				
Chlorooctadecane (COD)		73.0	40-140					10/8/09 18:29	
o-Terphenyl (OTP)		93.5	40-140					10/8/09 18:29	
2-Bromonaphthalene		97.9	40-140					10/8/09 18:29	
2-FluorobiphenyI		106	40-140					10/8/09 18:29	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-41

Sampled: 10/6/2009 09;46

Sample ID: 09J0123-01

		Pe	troleum Hydrocarbo	ons Analyses -	VPH				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 0:48	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
Unadjusted C9-C12 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 0:48	EEH
C9-C12 Aliphatics	ND	100	µg/L	l		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 0:48	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	i		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
Toluene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 0:48	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 0:48	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		113	70-130					10/8/09 0:48	
2,5-Dibromotoluene (PID)		92.7	70-130					10/8/09 0:48	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-41

Sampled: 10/6/2009 09:46

Sample ID: 09J0123-01

			Metals Anal	yses (Total)					
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic	ND	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT
Barium	ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT
Chromium	ND	50	րք∕Լ	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT
Мегситу	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:40	MPF
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT
Silver	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:22	KMT

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-25

Sampled: 10/6/2009 10:30

Sample ID: 09J0123-02
Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

			Volatile Organic Co	mpounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Bromochloromethane	ND	1.0	μ <u>g</u> /L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Bromomethane	ND	5.0	μg/L	l		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
n-Butylbenzene	11	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
sec-Butylbenzene	4.1	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
tert-Butylbenzene	1.6	1.0	μ g/ L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF ·
Chloroform	ND	2.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5,0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Dichloredifluoromethane (Freen 12)	ND	2.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
i, i-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/8/09		MFF
2,2-Dichloropropane	ND	1.0	μg/L	l		SW-846 8260B		10/9/09 21:32	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1			10/8/09	10/9/09 21:32	MFF
cis-1,3-Dichloropropene	ND	5.0		1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L /۱			SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Diethyl Ether	ND ND	2.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Diisopropyl Ether (DIPE)	ND	0,50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,4-Dioxane	ND ND		μg/L	l ,	W 14	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Ethylbenzene		50	μg/L	I	V-16	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
, Juono	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-25

Sampled: 10/6/2009 10:30

Sample ID: 09J0123-02 Sample Matrix: Ground Water

voiatne	Organic	Compounds	by	GC/MS	

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	1	R-05	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
lsopropylbenzene (Cumene)	3.4	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
p-lsopropyltoluene (p-Cymene)	8.4	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Methylene Chloride	ND	5,0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Naphthalene	88	2.0	μg/L	1	R-05	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
n-Propylbenzene	6.3	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Styrene	ND	1,0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Toluene	ND	1.0	rs-2 μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	·
1,2,3-Trichlorobenzene	ND	5.0	μ <u>g</u> /L	l		SW-846 8260B	10/8/09		MFF
1,2,4-Trichlorobenzene	ND	1.0	rg/L	1	R-05	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1	K-05	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B		10/9/09 21:32	MFF
Trichloroethylene	ND	1,0	μg/L	l		SW-846 8260B	10/8/09 10/8/09	10/9/09 21:32	MFF
Trichlorofluoremethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B		10/9/09 21:32	MFF
1,2,3-Trichtoropropane	ND	2.0	μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2,4-Trimethylbenzene	88	1.0	μg/L	1			10/8/09	10/9/09 21:32	MFF
1,3,5-Trimethylbenzene	32	1.0	μg/L μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Vinyl Chloride	ND	2.0	μg/L μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
m+p Xylene	3.6	2.0	րg/L րg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
o-Xylene	ND	1.0	μg/L μg/L	1		SW-846 8260B	10/8/09	10/9/09 21:32	MFF
Surrogates	1112				T21	SW-846 8260B	10/8/09	10/9/09 21:32	MFF
1,2-Dichloroethane-d4		% Recovery	Recovery Limits 70-130		Flag			10/0/00 04 ::	
Toluene-d8		99.3	70-130					10/9/09 21:32	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	97.8	70-130		10/9/09 21:32
Toluene-d8	99.3	70-130		10/9/09 21:32
4-Bromofluorobenzene	104	70-130		10/9/09 21:32

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-25

Sampled: 10/6/2009 10:30

Sample ID: 09J0123-02 Sample Matrix: Ground Water

			,		~~ **				
Analyte	Results	RL	F1 . 2.	D			Date	Date/Time	
C9-C18 Aliphatics			Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
•	840	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Unadjusted C11-C22 Aromatics	860	160	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	СЈМ
C11-C22 Aromatics	740	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Acenaphthene	4.4	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Acenaphthylene	11	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:50	СЈМ
Anthracene	ND	2.0	μg/L	1		. MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	СЈМ
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18;50	СЈМ
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Benzo(g,h,i)perylene	ND	2,0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	СЈМ
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	СЈМ
Chrysene	ND	2.0	μg/L	i		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	СЈМ
Dibenz(a,h)anthracene	ND	2.0	μ <u>υ</u> /Ł	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	СЈМ
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Fluorene	6.5	2.0	μg/L	1		MADEP-EPH-04-1, 1	10/7/09	10/8/09 18:50	CJM
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
2-Methylnaphthalene	47	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:50	CJM
Naphthalene	48	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Phenanthrene	3.2	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 18:50	CJM
Pyrene	ND	2,0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 18:50	CJM
Surrogates		% Recovery	Recovery Limits		Flag				
Chlorooctadecane (COD)		69.5	40-140					10/8/09 18:50	
o-Terphenyl (OTP)		90.6	40-140					10/8/09 18:50	
2-Bromonaphthalene		94.0	40-140					10/8/09 18:50	
2-Fluorobiphenyl		104	40-140					10/8/09 18:50	

Surrogates	% Recovery	Recovery Limits	Flag	
Chlorooctadecane (COD)	69.5	40-140		10/8/09 18:50
o-Terphenyl (OTP)	90.6	40-140		10/8/09 18:50
2-Bromonaphthalene	94.0	40-140		10/8/09 18:50
2-Fluorobiphenyi	104	40-140		10/8/09 18:50

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-25

Sampled: 10/6/2009 10:30

Sample ID: 09J0123-02

		Pet	roleum Hydrocarbo	ons Analyses -	VPH			****	····
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	500	μg/L	5		MADEP-VPH-04-1,1	10/7/09	10/8/09 4:03	EEH
C5-C8 Aliphatics	ND	500	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
Unadjusted C9-C12 Aliphatics	1500	500	μg/L,	5		MADEP-VPH-04-1,1	10/7/09	10/8/09 4:03	EEH
C9-C12 Aliphatics	640	500	μg/L	5		MADEP-VPH-04-1,1	10/7/09	10/8/09 4:03	EEH
C9-C10 Aromatics	900	500	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
Benzene	NĐ	5.0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
Ethylbenzene	ND	5.0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
Methyl tert-Butyl Ether (MTBE)	ND	5.0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
Naphthalene	86	50	μ <u>ư</u> /L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
Toluene	ND	5,0	μg/L	5		MADEP-VPH-04-1.)	10/7/09	10/8/09 4:03	EEH
m+p Xylene	ND	10	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:03	EEH
o-Xylene	ND	5.0	μg/L	5		MADEP-VPH-04-1,1	10/7/09	10/8/09 4:03	EEH
Surrogates		% Recovery	Recovery Limits	-	Flag				
2,5-Dibromotoluene (FID)		123	70-130	***			·	10/8/09 4:03	
2,5-Dibromotoluene (PID)		99.9	70-130					10/8/09 4:03	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009
Field Sample #: CM-25

Sampled: 10/6/2009 10:30

Sample ID: 09J0123-02

	Metals	Analyse	s (Total)
--	--------	---------	-----------

	Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic		ND	2.0	μg/Լ	5		SW-846 6020A	10/7/09	10/8/09 16:25	KMT
Barium		520	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:25	КМТ
Cadmium		ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:25	KMT
Chromium		ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:25	KMT
Lead		ND	5,0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:25	KMT
Mercury		ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:42	MPF
Selenium		ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:25	KMT
Silver		ND	2,5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:25	KMT

Project Location: Crane Manufacturing

Sample Description;

Sampled: 10/6/2009 11:20

Date Received: 10/6/2009

Work Order: 09J0123

Field Sample #: CM-22 Sample ID: 09J0123-03

			Volatile Organic Co	arbonnus nà ex-	J/1915				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Bromobenzene	ND	1.0	μք/Լ	I		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Bromochloromethane	ND	1.0	μ g /L	I		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Bromoform	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Bromomethane	ND	5.0	μg/L	1	•	SW-846 8260B	10/12/09	10/12/09 17:46	LBD
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
n-Butylbenzene	5.6	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
sec-Butylbenzene	2.7	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
tert-Butylbenzene	NĐ	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Carbon Disulfide	ND	3.0	µg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Carbon Tetrachloride	ND	1.0	μg/L	ı		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Chlorobenzene	ND	1.0	μ <i>g</i> /L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Chloro dibromomethane	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Chloroethane	ND	2.0	, ջ – µg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Chloroform	2,2	2.0	ր ջ /L	ī		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
2-Chlorotoluene	ND	1.0	μg/L	ı I		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
4-Chlorotoluene	ND	1.0	μ g/ L	1		SW-846 8260B	10/12/09	10/12/09 17:46	
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/12/09		LBD
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B		10/12/09 17:46	LBD
1,2-Dichlorobenzene	ND	1.0	μg/L	1			10/12/09	10/12/09 17:46	LBD.
1,3-Dichlorobenzene	ND	1.0		1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,4-Dichlorobenzene	ND	1.0	μg/L /1	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Dichlorodifluoromethane (Freon 12)	ND	2.0	μ <u>g</u> /L			SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,1-Dichloroethane	ND		μg/L α	1		SW-846 8260B	10/12/09	10/12/09 17;46	LBD
1,2-Dichloroethane		1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
cis-1,2-Dichlomethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
• •	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
cis-1,3-Dichloropropene	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
trans-1,3-Dichleropropene	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Diethy1 Ether	ND	2.0	μg/L	J		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
I,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Ethylbenzene									

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-22

Sampled: 10/6/2009 11:20

Sample ID: 09J0123-03 Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

		v	olatile Organic Com	pounds by GO	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L]		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
2-Hexanone (MBK)	ND	10	μg/L	i		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Isopropylbenzene (Cumene)	1,3	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
p-lsopropyltoluene (p-Cymene)	5.0	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Methyl tert-Butyl Ether (MTBE)	NĐ	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Naphthalene	ND	2.0	μg/L	ī		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
n-Propylbenzene	3.1	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	î		SW-846 8260B	10/12/09	10/12/09 17:46	LBD LBD
1,1,2,2-Tetrachloroethane	ND	0,50	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09		LBD
Tetrahydrofuran	ND	10	μ <i>g/</i> L μ <i>g/</i> L	l		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Toluene	ND	1.0	րց.L րց/L	1		SW-846 8260B		10/12/09 17:46	LBD
1,2,3-Trichlorobenzene	ND	5,0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,2,4-Trichlorobenzene	ND	1.0	μg/L μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,1,1-Trichloroethane	ND	1.0	μ <i>g</i> /L	1			10/12/09	10/12/09 17:46	LBD
1,1,2-Trichloroethane	ND	1.0		1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Trichloroethylene	ND	1.0	μg/L 7			SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,2,3-Trichloropropane	ND		μg/ L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,2,4-Trimethylbenzene	ND 12	2.0	μg/L "	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
1,3,5-Trimethylbenzene		1.0	μg/L	I		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Vinyl Chloride	4.2	1.0	μg/L	Į.		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
o-Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17;46	LBD
0-Aylene	ND	1.0	μg/L	1		SW-846 8260B	10/12/09	10/12/09 17:46	LBD
Surrogates		% Recovery	Recovery Limits		Flag				
I,2-Dichloroethane-d4 Toluene-d8		105 98.8	70-130					10/12/09 17:46	
4-Bromofluorobenzene		105	70-130 70-130					10/12/09 17:46	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009

Field Sample #: CM-22

Sampled: 10/6/2009 11:20

Sample ID: 09J0123-03

		Pe	troleum Hydrocarbo	ns Analyses -	ЕРН		_		
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analysi
C9-C18 Aliphatics	450	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
C19-C36 Aliphatics	ND	150	μ g /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
Unadjusted C11-C22 Aromatics	520	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
C11-C22 Aromatics	460	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
Acenaphthene	ND	2.0	μg/L	l		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
Acenaphthylene	6.9	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:10	СЈМ
Anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:10	CJM
Benzo(a)anthracene	ND	2.0	μg/Ł	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:10	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	СЈМ
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
Benzo(g,h,i)perylene	ND	2,0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:10	CJM
Benzo(k)fluoranthene	ND	2.0	μ <u>e</u> /L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:10	CJM
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	
Fluoranthene	ND	2,0	μg/L	1		MADEP-EPH-04-1,1	10/7/09		CJM
Fluorene	4.0	2,0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10 10/8/09 19:10	CJM
Indeno(1,2,3-cd)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09		CJM
2-Methylnaphthalene	39	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19;10	CJM
Naphthalene	7,6	2,0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:10	CJM
Phenanthrene	ND	2.0	μg/L μg/L	1		MADEP-EPH-04-1.1		10/8/09 19:10	CJM
Рутепе	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09 10/7/09	10/8/09 19:10 10/8/09 19:10	CJM CJM
Surrogates		% Recovery	Recovery Limits		Flag		,		
Chlorocctadecane (COD)		64.7	40-140					10/8/09 19:10	
o-Terphenyl (OTP)		88.8	40-140					10/8/09 19:10	
2-Bromonaphthalene		99.9	40-140					10/8/09 19-10	

Surrogates	% Recovery	Recovery Limits	Flag	
Chlorooctadecane (COD)	64.7	40-140		 10/8/09 19:10
o-Terphenyl (OTP)	88.8	40-140		10/8/09 19:10
2-Bromonaphthalene	99.9	40-140		10/8/09 19:10
2-Fluorobiphenyl	110	40-140		10/8/09 19:10

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-22

Sampled: 10/6/2009 11:20

Sample ID: 09J0123-03

Petroleum l	Hydrocarbons	Analyses -	VPH
-------------	--------------	------------	-----

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	µg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
Unadjusted C9-C12 Aliphatics	640	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
C9-C12 Aliphatics	280	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
C9-C10 Aromatics	360	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
Ethylbenzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
Toluene	ND	1.0	μg/L	I		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
m+p Xylene	ND	2.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 1:36	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 1:36	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		127	70-130					10/8/09 1:36	

Surrogates	% Recovery	Recovery Limits	Flag	•	
2,5-Dibromotoluene (FID)	127	70-130			10/8/09 1:36
2,5-Dibromotoluene (PID)	103	70-130			10/8/09 1:36

Project Location: Crane Manufacturing

Sample Description:

ND

ND

ND

0.00010

50

2.5

Work Order: 09J0123

10/7/09

10/7/09

10/7/09

10/8/09 13:43

10/8/09 16:29

10/8/09 16:29

MPF

KMT

KMT

SW-846 7470A

SW-846 6020A

SW-846 6020A

Date Received: 10/6/2009 Field Sample #: CM-22

Мегсшту

Selenium

Silver

Sampled: 10/6/2009 11:20

Sample ID: 09J0123-03

Sample Matrix: Ground Water

		Metals Analyses (Total)							
Analyte	e Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Arsenic	ND	4.0	μg/L	10	DL-04	SW-846 6020A	10/7/09	10/8/09 16:29	KMT
Barium	270	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:29	KMT
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:29	KMT
Chromium	ND	100	μg/L	10	DL-04	SW-846 6020A	10/7/09	10/8/09 16:29	КМТ
Lead	5.3	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:29	KMT

10

5

DL-04

mg/L

 $\mu g/L$

 $\mu g/L$

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-38

Sampled: 10/6/2009 12:30

Sample ID: 09J0123-04

Ethylbenzene

ND

		V	olatile Organic Co	mpounds by GC	C/MS				
							Date	Date/Time	
Analyte Acetone	Results ND	RL 1000	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
tert-Amyl Methyl Ether (TAME)			μg/L "	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Benzene	ND	10	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Bromobenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Bromochloromethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Bromodichioromethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Bromoform	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Bromomethane	ND	100	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
2-Butanone (MEK)	ND	100	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
n-Butylbenzene	ND	400	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
sec-Butylbenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
tert-Butylbenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	20	μ g /L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Carbon Disulfide	ND	10	μg/L	. 20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Carbon Tetrachloride	ND	60	μg/L	20		SW-846-8260B	10/7/09	10/8/09 0:42	MFF
	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Chlorobenzene Chlorodibromomethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
	ND	10	µg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Chloroethane	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Chloroform	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Chloromethane	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
2-Chlorotoluene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
4-Chlorotoluene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	100	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2-Dibromoethane (EDB)	ND	10	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Dibromomethane	ND	20	μg/Ł	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2-Dichlorobenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,3-Dichlorobenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,4-Dichlorobenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Dichlorodifluoromethane (Freon 12)	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,1-Dichloroethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
,2-Dichloroethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
,l-Dichloroethylene	ND	20	µg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
is-1,2-Dichloroethylene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
rans-1,2-Dichloroethylene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
,2-Dichloropropane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
,3-Dichloropropane	ND	10	μg/L	20		\$W-846 8260B	10/7/09	10/8/09 0:42	MFF
,2-Dichloropropane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
,1-Dichloropropene	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
is-1,3-Dichloropropene	ND	100	μ g / <u>L</u>	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
ans-1,3-Dichloropropene	ND	10	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
riethyl Ether	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
hisopropyl Ether (DIPE)	ND	10	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	
4-Dioxane	ND	1000	μg/L	20	V-16	SW-846 8260B	10/7/09		MFF
thylhenzene	_		F5.5	20	, 10	3 m = 0 TO 0 2 0 0 D	10//102	10/8/09 0:42	MFF

μg/L

20

SW-846 8260B

10/7/09

MFF

10/8/09 0:42

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009

Field Sample #: CM-38

Sampled: 10/6/2009 12:30

Sample ID: 09J0123-04

Sample Matrix: Ground Water		Ve	olatile Organic Comp	ounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
2-Hexanone (MBK)	ND	200	μք/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Isopropylbenzene (Cumene)	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
p-IsopropyItoluene (p-Cymene)	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Methyl tert-Butyl Ether (MTBE)	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Methylene Chloride	ND	100	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
4-Methyl-2-pentanone (MIBK)	ND	200	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Naphthalene	250	40	μg/L	20	V-06	SW-846 8260B	10/7/09	10/8/09 0:42	MFF
n-Propylbenzene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Styrene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,1,1,2-Tetrachloroethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,1,2,2-Tetrachloroethane	ND	10	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Tetrachloroethylene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Tetrahydrofuran	ND	200	μ g/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Toluene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2,3-Trichlorobenzene	ND	100	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2,4-Trichlorobenzene	ND	20	. υ μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,1,1-Trichloroethane	ND	20	μ <u>υ</u> /L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,1,2-Trichloroethane	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Trichloroethylene	ND	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Trichlorofluoremethane (Freon 11)	ND	40	, υ μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2,3-Trichloropropane	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,2,4-Trimethylbenzene	160	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
1,3,5-Trimethylbenzene	45	20	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Vinyl Chloride	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
m+p Xylene	ND	40	μg/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
o-Xylene	ND	20	⊬ g/L	20		SW-846 8260B	10/7/09	10/8/09 0:42	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		101	70-130					10/8/09 0:42	
Toluene-d8		98.4	70-130					10/8/09 0:42	
4-Bromofluorobenzene		99,6	70-130					10/8/09 0:42	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: CM-38

Sampled: 10/6/2009 12:30

Sample ID: 09J0123-04 Sample Matrix: Ground Water

i cu dicusti	YYZ UI O	Carouns	Amaryses.	- ICL YX

		16	позеим хушгосагис	ins Amaryses -	· EFM				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	8400	750	μg/L	5		MADEP-EPH-04-1.1	10/7/09	10/12/09 11:38	CJM
C19-C36 Aliphatics	1100	150	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Unadjusted C11-C22 Aromatics	5600	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
C11-C22 Aromatics	5000	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Acenaphthene	11	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	СЈМ
Acenaphthylene	55	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	СЈМ
Anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	СЈМ
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Benzo(g,h,i)perylene	NĐ	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:31	CJM
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:31	СЈМ
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	СЈМ
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Fluoranthene	ND	2,0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
Fluorene	32	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:31	СЈМ
Indeno(1,2,3-cd)pyrene	ND	2,0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	CJM
2-Methylnaphthalene	380	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	СЈМ
Naphthalene	130	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:31	CJM
Phenanthrene	20	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:31	СЈМ
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:31	СЈМ
Surrogates	******	% Recovery	Recovery Limits		Flag	· · · · · · · · · · · · · · · · · · ·		*****	
Chlorooctadecane (COD)		64.5	40-140		· · · · · · · · · · · · · · · · · · ·			10/8/09 19:31	
o-Terphenyl (OTP)		85.1	40-140					10/8/09 19:31	
2-Bromonaphthalene		83.4	40-140					10/8/09 19:31	
2-Fluorobiphenyl		89.9	40-140					10/8/09 19:31	

Surrogates	% Recovery	Recovery Limits	Flag	
Chlorooctadecane (COD)	64.5	40-140		10/8/09 19:31
o-Terphenyl (OTP)	85.1	40-140		10/8/09 19:31
2-Bromonaphthalene	83.4	40-140		10/8/09 19:31
2-Fluorobiphenyl	89.9	40-140		10/8/09 19:31

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009

Field Sample #: CM-38

Sampled: 10/6/2009 12:30

Sample ID: 09J0123-04

		Pet	roleum Hydrocarbo	ons Analyses -	VPH				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	500	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
C5-C8 Aliphatics	ND	500	μg/L,	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
Unadjusted C9-C12 Aliphatics	1500	500	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
C9-C12 Aliphatics	ND	500	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	ЕЕӉ
C9-C10 Aromatics	1000	500	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
Benzene	ND	5.0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
Ethylbenzene	13	5.0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
Methyl tert-Butyl Ether (MTBE)	ND	5.0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
Naphthalene	250	50	μg/L	5		MADEP-VPH-04-1,1	10/7/09	10/8/09 4:54	EEH
Toluene	ND	5.0	μ <u>g</u> /L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
m+p Xylene	ND	10	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
o-Xylene	ND	5,0	μg/L	5		MADEP-VPH-04-1.1	10/7/09	10/8/09 4:54	EEH
Surrogates		% Recovery	Recovery Limits		Flag				•
2,5-Dibromotoluene (FID)		111	70-130	-		**************************************		10/8/09 4:54	•
2,5-Dibromotoluene (PID)		104	70-130			-		10/8/09 4:54	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009
Field Sample #: CM-38

Sampled: 10/6/2009 12:30

Sample ID: 09J0123-04

			Metals Anal	lyses (Total)					-
Ans	alyte Resul	ts RL	Units	Dilution	Flag	Method	Date	Date/Time	
Arsenic	•			Ditution	riag		Prepared	Analyzed	Analyst
Arseme	2.2	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	KMT
Barium	ND	250	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	KMT
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	KMT
Chromium	ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	KMT
Lead	10	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	KMT
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:45	MPF
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	KMT
Silver	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:32	КМТ

Project Location: Crane Manufacturing

Sample Description:

Date Received: 10/6/2009 Field Sample #: Existing-4

Sampled: 10/6/2009 13:18

Sample ID: 09J0123-05

Sample Matrix: Ground Water

Volatile Organic Compounds by GC/MS

	Volatile Organic Compounds by GC/MS									
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst	
Acetone	ND	50	μg/L	I		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Benzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Bromodichloromethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Bromoform	ND	5.0	μ ϗ/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Bromomethane	NĐ	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
2-Butanone (MEK)	ND	20	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
n-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
sec-Butylbenzene	1.2	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
tert-Butylbenzene	ND	1.0	μ g /Ł	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Carbon Disulfide	ND	3.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Carbon Tetrachloride	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Chlorobenzene	ND	1.0		1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Chlorodibromomethane	ND	0.50	µg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Chloroethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Chloroform	ND	2.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Chloromethane	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,3-Dichlorobenzene	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,2-Dichloroethane	ND	1.0	μg/L	I		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,1-Dichloroethylene	ND	1.0	րը/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
cis-1,2-Dichloroethylene	ND	1.0	μg/L	l		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
trans-1,2-Dichloroethylene	ND	0.1	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
t,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
sis-1,3-Dichloropropene	ND	5.0	μg/L	1		SW-846 8260B	10/7/09			
rans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12 10/7/09 23:12	MFF	
Diethyl Ether	ND	2,0	μg/L	1		SW-846 8260B	10/7/09		MFF	
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
,4-Dioxane	ND	50	րg/L	1	V-16	SW-846 8260B	10/7/09	10/7/09 23:12	MFF	
Ethylbenzene	ND	1.0	µg/L	1	7-10			10/7/09 23:12	MFF	
	.110	1.0	hR.r.	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF	

Work Order: 09J0123

Project Location: Crane Manufacturing

Sample Description:

Field Sample #: Existing-4 Sample ID: 09J0123-05

Date Received: 10/6/2009

Sample Matrix: Ground Water

Sampled: 10/6/2009 13:18

Volatile Organic Compounds by GC/MS

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Hexachlorobutadiene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
2-Hexanone (MBK)	ND	10	μg/L	ì		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
p-lsopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,1,2,2-Tetrachioroethane	ND	0.50	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Tetrachloroethylene	ND	1.0	μ g/ Ł	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Tetrahydrofuran	ND	10	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,2,3-Trichlorobenzene	ND	5,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,2,4-Trichlorobenzene	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,1,1-Trichloroethane	ND	1,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Trichlorofluoromethane (Freon 11)	ND	2,0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,2,3-Trichloropropane	ND	2.0	μ g /L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
1,2,4-Trimethylbenzene	ND	1.0	μ g/L	1		\$W-846 8260B	10/7/09	10/7/09 23:12	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260B	10/7/09	10/7/09 23:12	MFF
Surrogates		% Recovery	Recovery Limits		Flag				
1,2-Dichloroethane-d4		102	70-130					10/7/09 23:12	
Toluene-d8		101	70-130					10/7/09 23:12	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	102	70-130		10/7/09 23:12
Toluene-d8	101	70-130		10/7/09 23:12
4-Bromofluorobenzene	101	70-130		10/7/09 23:12

Work Order: 09J0123

Project Location: Crane Manufacturing

Sample Description:

82,8

Work Order: 09J0123

Date Received: 10/6/2009 Field Sample #: Existing-4

Sampled: 10/6/2009 13:18

Sample ID: 09J0123-05

2-Fluorobiphenyl

Sample Matrix: Ground Water							•		
		Pe	troleum Hydrocarbo	ons Analyses -	ЕРН				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	150	μ g/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	СЈМ
C19-C36 Aliphatics	ND	150	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	СЈМ
Unadjusted C11-C22 Aromatics	240	100	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
C11-C22 Aromatics	240	100	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	CJM
Acenaphthene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	СЈМ
Acenaphthylene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
Anthracene	ND	2,0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
Benzo(a)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	CJM
Benzo(a)pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	СЈМ
Benzo(b)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	СЈМ
Benzo(g,h,i)perylene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	CJM
Benzo(k)fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
Chrysene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
Dibenz(a,h)anthracene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM -
Fluoranthene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	CJM
Fluorene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
Indeno(1,2,3-cd)pyrene	ND	2.0	μ <u>υ</u> /L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	СЈМ
2-Methylnaphthalene	ND	2.0	μg/L	1		MADEP-EPH-04-1,1	10/7/09	10/8/09 19:52	CJM-
Naphthalene	3.8	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	CJM
Phenauthrene	ND	2.0	μg/L	1		MADEP-EPH-04-1, I	10/7/09	10/8/09 19:52	СЈМ
Pyrene	ND	2.0	μg/L	1		MADEP-EPH-04-1.1	10/7/09	10/8/09 19:52	СЈМ
Surrogates		% Recovery	Recovery Limits		Flag		********		
Chloroctadecane (COD)		63.1	40-140		-			10/8/09 19:52	
o-Terphenyl (OTP)		76.2	40-140					10/8/09 19:52	
2-Bromonaphthalene		80.5	40-140					10/8/09 19:52	

40-140

10/8/09 19:52

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009
Field Sample #: Existing-4

Sampled: 10/6/2009 13:18

Sample ID: 09J0123-05
Sample Matrix: Ground Water

Petroleum Hydrocarbons Analyses - VPH

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
C5-C8 Aliphatics	ND	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
Unadjusted C9-C12 Aliphatics	210	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
C9-C12 Aliphatics	210	100	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
C9-C10 Aromatics	ND	100	μg/L	1		MADEP-VPH-04-1,1	10/7/09	10/8/09 2:25	EEH
Benzene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
Ethylbenzene	ND	1.0	μg/L	J		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	I		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
Naphthalene	ND	10	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	ÉEH
Toluene	ND	0.1	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
m+p Xylene	ND	2.0	μg/L	ī		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
o-Xylene	ND	1.0	μg/L	1		MADEP-VPH-04-1.1	10/7/09	10/8/09 2:25	EEH
Surrogates		% Recovery	Recovery Limits		Flag				
2,5-Dibromotoluene (FID)		126	70-130	-				10/8/09 2:25	
2,5-Dibromotoluene (PID)		104	70-130					10/8/09 2;25	

Project Location: Crane Manufacturing

Sample Description:

Work Order: 09J0123

Date Received: 10/6/2009
Field Sample #: Existing-4

Sampled: 10/6/2009 13:18

Sample ID: 09J0123-05

Metals Analyses (Total)										
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst	
Arsenic	3.4	2.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:36	КМТ	
Barium	ND	250	µg/L	5		SW-846 6020A	10/7/09	10/8/09 16:36	КМТ	
Cadmium	ND	2.5	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:36	KMT	
Chromium	ND	50	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:36	KMT	
Lead	ND	5.0	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:36	KMT	
Mercury	ND	0.00010	mg/L	1		SW-846 7470A	10/7/09	10/8/09 13:47	MPF	
Selenium	ND	25	μg/L	5		SW-846 6020A	10/7/09	10/8/09 16:36	KMT	
Silver	ND	2.5	μ g /L	5		SW-846 6020A	10/7/09	10/8/09 16:36	KMT	